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In this thesis we derive a lattice structure to realize linear phase transfer ;
. functions and develop an adaptive algorithm for continuously updating the lattice i
reflection coefficients. The lattice structure is considered because of its superior finite
wordlength performance compared to transversal structures. The adaptive lattice \
algorithm developed in this thesis has been applied to estimate the sinusoidal ::
frequencies as part of Prony’s method. Results of computer simulation supporting the :'
()
theory are reported. i
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I. INTRODUCTION

Every finite-impuise response (FIR) fiiter has two distinct properties (Ref. 3j ;
first, it is always stable; second, if it is not causal, it can always be made to be causal
by introducing a finite delay. FIR filters can be designed so that their frequency
responses have an cxactly linear phase characteristic. FIR filters with linear phase are
important in applications like speech processing and data transmission, because in
these applications a nonlinear phase filter is harmful. The symmetry property of the
linear phase FIR filters, however, helps reduce the number of coefficients by nearly one
half resulting in substantial computational savings.

The various filter realizations, or structures that are frequently considered are the
direct form, the cascade form, the parallel form, and the lattice form. The lattice form
realization is of particular interest because of its superior numerical performance, and
moduiarity in the structure. The operation of a lattice fliter is completeiv described by
specifying the sequence of reflection coefficients that characterize the individual stages
of the filter.

Conventionally an adaptive filter is composed of a tapped delay line or
transversal structure with adjustable coefficients or weights and an adaptive algorithm
which updates the coeflicients continuously based on some performance criterion. The
design of a fixed coefficient filter is based on the prior knowledge of both signal and
noise. Adaptive filters, on the other hand, have the ability to adjust their own
parameters automatically, and their design requires little, or no a priori knowledge of
signal or noise characteristics [Ref. 14]. However, the designer has to choose the order
of the filter and the type of the algorithm. Also the adaptive filter usually requires a
large initial transient time (i.e., the initial filter convergence period).

The least-mean-square (LMS) adaptive algorithm minimizes the mean square

srror Sth, ovorecurnivelv aitering cthe iter coctfictent vector (W) at cuch campling

aostant. ioe cngwnal Widrow-Horf LMS algorithm s Sk~ 1) =3{X)— Jpeia, L%,
where M is a convergence factor controlling stability and rate of adaptation [Ref. 13).
The algorithm is based on the method of steepest descent, moving b(k) in proportion
to the instantaneous gradient estimate of the mean square error. The successive
orthogonalization provided by the lattice offers advantages in adaptive convergence

rate which cannot be achieved with tapped delay lines [Ref. 17,18].
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OGN I R Y I N N A O O N T TR T T N AT U AT AP SN




-

RO N A

Recently, Prony’s method has been applied to the estimation of spectral lines in

noise (Ref. 11]. It has been shown that the Prony’s method yields better spectral
estimates than a companion spectral estimation technique, called Pisarenko’s method
(Ref. 10]. Also it has been established that the filter structure involved in Prony’s
method has a linear phase property which is not the case {or Pisarenxo’s method [Ret.
11}

The thesis investigates the application of lattice structures in Prony’s method of
spectral line estimation. The complete solution to Prony’s method consists of three
steps: (i) representing a given process of M sinusoids in noise in terms of complex
exponentials, (i) finding roots of a symmetric polynomial, and (iii) estimating the
frequency, phase and amplitude information. In this thesis, however, we have
emphasized only the frequency estimation problem. Here we derive an adaptive lattice
structure to realize linear phase transfer functions which will be used to estimate the
sinusoidal frequencies as part of Prony’s method. The scope of the thesis consists of
obtaining a lineay phase lattice structure, developing a least mean square (LMS) error
based adaptive algoritim, and tesung the lattice structure and the algorithm by means
of computer simulation.

The thesis is organized as follows. In Chapter II, we present a brief review of
Prony’s method of representing a given process in terms of a set of complex
exponentials, and then address the problem of estimating spectral lines using this
method. We show that the original Prony’s method has to be modified slightly in
order to apply it to the spectral line estimation problems. In Chapter 111, we discuss
the basic concepts of the linear phase FIR filter and the related lattice structure. We
show three examples of obtaining the lattice structures for both linear phase and non-
linear phase FIR transfer functions (Appendix A). In Chapter IV, we briefly discuss
the least-mean-square (LMS) adaptive algorithm that results from attempting to
minimize the mean square error and present a summary of some LMS algorithms for
lattice that have been reported in the literature. Also included are some computer
SUMUIRLoN resuits. 1o Chanter YV, ve sresent the dervvanon o aonew UMS hased TIR
AGdpuve Latlice algeniim and oxtend . (C di¢ dnear paase case as wealdo The new
algorithm is then used in the estimation of spectral lines in white noise. Results of
simulation are included.
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II. PRONY’S SPECTRAL LINE ESTIMATION

A. INTRODUCTION

In its original form, Prony’s method analyzes processes involving simple, or
damped harmonics using complex exponential functions as coordinate functions. On
the other hand, the well known Fourier analysis consists of representing a given
process in terms of a set of sine and cosine functions. Recently, Prony’s method has
been applied to the estimation of spectral lines in noise {Ref. 11]. It has been shown
that the Prony’s method yields better spectral estimates than a companion spectral
estumation technique, called Pisarenko’s method, in terms of bias, spurious responses,
and the computational complexity [Ref. 10].

In this chapter, we present a brief review of the Prony’s method of representing a
given process in terms of a set of complex exponentials, and then address the problem
of est.imating spectral lines using this methcd. We show that original Prony’s method
has to be modified slightly in order to apply it to the spectral line estimation problems.

B. PRONY'S METHOD
Consider that the given process, x(k), consists of n distinct sinusoids, then x(k)
can be approximated by an expression of the form

x) = 14, coso + B sinw (2.1) <
1=

where the @,’s are sinusoidal frequencies. The above approximation can be considered ‘
as a special case of an exponential approximation given by [Ref. 29] o

x(k) =i=‘}31 C, el4% (2.2) -

D

where m = 2n and the a's are identified as o, and -, The values of ®, can be
estimated, by Prony’s method, assuming that the data are known atk = 0, 1, ..., N-1.
From Eq.(2.2), we can obtain the following set of equalities

12




wmm_ ‘

C, +C, + . +C_  =x0)
C, 2+ C, ey + .. o+ C, d2m = x(1)
C %+ C e+ o+ C_enm = xQ) (2.3)

C, e(N-Da; 4 C, d(N-Day o 4 C, d(N-Dag = yN.1)

Now we have a set of N equations with 2m unknowns, namely, Ci and a =1, 2, ...,
m) which can be solved exactly if N=2m, or approximately by the method of least
squares if N>2m. Also note that the N equations are nonlinear in the exponential
terms ¢i%i. Let i3, i=1, 2, ..., m, be the roots of the equation [Ref. 29].

Jma 4 alej(m-l)a + ayelm2a 4 4 am_leja +ay, =0 (2.4)

In order to determine the coeflicients a (i= 1,2, .., m), we multiply the first equation

in Eq.(2.3) by a_, the second equation by @1 - the mth

equation by a, and the
(m+ l)th equation by 1, and add the resuits. In this way, we can obtain the (\N-m)

linear equations. From Eq.(2.2), we can obtain the following set of equalities
X(m) + x(m-1) @, + x(m-2) @, + ... +x(0) a =0
x(m+1) + x(m) a; + x(m-1) a, + ... +x(I) a =0

(2.5)

X(N-1) + x(N-2) a; + x(N-3) @, + ... +x(N-m-1) a =0

13
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Since the data x(k), k = 0, 1, 2, ..., N-1, are known, this set of equations can be solved
for the m @’s if N22m. After the a’s are determined, el?;, i = I, 2, ..., m, are found
from Eq.(2.4). The set of equations in Eq.(2.3) then becomes linear in terms of C,i=
1, 2, .., m. The C’s can be determined from the first m equations, or determined
approximately by applying the least squares method to the entire set of equations. The
nonlinearity associated in finding eiai, which 1s related to the frequencies j®, and -J,, is
concentrated in Eq.(2.4). The above procedure is known as Prony’s method.

Now, in the case of Eq.(2.1), since the roots of Eq.(2.4) occur in reciprocal pairs,
Eq.(2.4) must be invariant under the substitution of e’13; for ejai, so that we must have

=1, U(2n.1)=Ops o O 4 | =y - Thus Eq.(2.4) becomes

Ql2N® L a d2n-oo a gn+ o o a, in@
+ay  d@DO L 4Oy =
or
eIN® [ (ejnco + e-jnm) + a (ej(n-l)m + e-j(n-l)o)) + o+
L (ejm + e'j‘o) +ta,}] = O

since eP® % 0, we have

2 cosn@® + 2 a; cos(n-Dw + ... + 2an_1 cosw + a, = 0 (2.6)

Now noting that m=11, and ipplving the above svmmetry of &'s 1o £q.i2.
Rer. 11]
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{x(0) + x(2n)} + {x(1) + x(2n-1)} a; + ... + {x(n-1) + x(n+1)} @, ;

+x(n)a, =0

{x(1) + x(2n+1)} + {x(2) + x(2n)} o] + ... + {x(n) + x(n+2)} @,
+ x(@+Da, = 0

: 2.7

y - {x(N-2n-1) + x(N-1)} + {x(N-2n) + x(N-2)} a; + ... + [x(N-n-2)

- -

+ X(N-n)} a1 + x(N-n-Da, = 0

oA e -

Eq.(2.7) consists of a set of N-2n equations and n unknowns. This set can be solved
exactly for the a’s if N=3n, or solved approximately by the least squares method if
N> 3p, and then the @’s are determined from Eq.(2.6).

P

C. ESTIMATION OF FREQUENCY, AMPLITUDE AND PHASE

If a process under measurement contains an unknown number of sinusoids of
unknown frequencies and amplitudes, a variant of Prony’s method can be used to
determine the number of sinusoids and their associated frequencies and amplitudes. As

noted above, Pronv’s method is a technique for modeling data of equailv spaced

- e & -

sampies DV a linear compination of exponenuals. An cxponentiai curve having M
exponentials terms can be determined from the 2M data measurements. Each
exponential term Aiea‘ik has two parameters — an amplitude A; and an exponent 2
where a, can be real or imaginary. For the case where only an approximate fit with M
exponentials to a data set of N samples is desired, such that N> 2M, a least squares
estimation procedure is used.
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The model assumed is a set of M exponentials of arbitrary amplitude, phase,

frequency and damping factor. A process consisting of M real undamped (a is !
imaginary) sinusoids can be expressed as '

x(k) ‘i}il(“izak + a,"2"%) (2.8)

M A, cos(2rfkT + 6,)

1=l

with a, = (Ai/2)ejei and z= eiznfiT, where A, is the amplitude, f, is the frequency and Oi
is the phase of the ith sinusoid, respectively, and T is the sampling interval.

Finding {A,, 8, f,
least squares problem. Prony’s method solves two sequential sets of linear equations ;

£} and M that minimize the squared error is a difficult nonlinear ,

with an intermediate polynomial rooting step that concentrates the nonlinearity of the
problem in the polynomial rooting procedure (similar to Eq.(2.4)).

L

Define the polynomial, B(z), which has z and zi‘ as its roots, given by i

B(z) = “l(z -2)z-2") = _ZLMObj 2M-i = ¢ (2.9) 3

1= 1=

v,

with by=1 and the b being real coefficients. Since the roots are of unit modulus occur ;
in complex con]ugate pairs, then Eq.(2.9) must be invariant under the substitution 7! ';
b

for z. Therefore, Eq.(2.9) can be written as

A

22M B(1/z) = 22M ?- b, zI-2M 2£4 bzl =0 (2.10) N
N
N

Comparing Eqs.(2.9) and (2.10), we may conciude that bj=b2M-j for j=0,1, ... M,
with by = byyy = 1. Thus the requirement for complex conjugate root pairs of unit ';.'
modulus is implemented by constraining the polynomial coefficients to be symmetric '::
about the center element. Hence the rcalization of B(z) is a linear phase FIR filter. 'Ef
Based on order 2M, a linear prediction error can be written as ;,l'
N
16 N
N
)
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g(k) = ;\éobj [x(k+j) + x(2M-k+j)] (2.11)

which reduces the number of coefficients required by one-half.

N . The coefficients b, b,, ... . b are determined in a least squares fashion by
N minimizing the total squared error.

N N:2M

¢ E= X &) (2.12)
P i=0

1t

which yields the normal equations

o j§0 b, [ ?‘.;f)M[x(ZM-k+i) + x(k+1)] [x(2M-j+1i) + x(j+i))] = 0 (2.13)

k) fork=1,.. M

N This equation can be solved recursively for increasing order M.
From the estimated {bi} values, the {z} are determined using Eq.(2.9). This gives
A the frequency estimates.

f = tan"! [Im(z)/Re(z)] / 20T (2.14)

¢ To obtain the {ai} a second set of normal equations is solved,

S

i l"‘
‘2

Itz

Woa £ i e o Dokt
N =1 =g T - :

= j‘:;No(z Re 2.}) x(j) (2.15)

Ny fork=0,1, .. M
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The set {@;} provides both amplitude (A)).or power, and phase (Oi) information:

A =lal (2.16)
8, = tan"! { Im(b)/Re(b) | (2.17)
In the foregoing we have shown that ihe frequency estimation as part of Prony’s

method requires a polynomial with a linear phase property. In the next chapter, we
show that a lattice structure can be utilized to implement a linear phase transfer

-
¢

function.
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III. LINEAR PHASE FIR FILTERING

A. INTRODUCTION

Every finite-impulse response (FIR) filter has two distinct properties [Ref. 5] ;
first, it is always stable; second, if it is not causal, it can always be made to be causal
by introducing a finite delay.

FIR fiiters can be designed so that their frequency responses have an exactly
lnear phase characteristic. FIR filters with linear phase are important in applications
like speech processing and data transmission, because in these applications a nonlinear
phase filter is harmful.

The impulse response sequence of a linear phase FIR filter exhibits a kind of

symmetry, ¢.g., h(n) = h(N-1-n) for n = 0, 1, ..., (N/2)-1 (assuming that N is even).
In general, FIR filters require a large number of coeflicients to adequately meet with
the required filter specifications. The symmetry property of the linear phase FIR
filters, however, helps reduce the number of coefficients by nearly one half resulting in
substantial computational savings.

The various filter realizations, or structures that are frequently considered are the
direct form, the cascade form, the parallel form, and the lattice form. The lattice form
realization is of particular interest because of its superior numerical performance, and
modularity in the structure. Lattice realizations have been successfullv utilized in
filtering and spectral analysis, and in modeling of some physical process like speech,
geophysical data etc. [Ref. 8]. The operation of a lattice filter 1s completely described
by specifying the sequence of reflection coefficients that characterize the individual
stages of the filter.

In this chapter, we will discuss the basic concepts of the linear phase FIR filter
and the related lattice structure. And finally, we will show three examples of obtaining
the lattice srructures reajizing for "oth »ohase and ncn-iinear ohase =IR ‘ransier

‘uncuens s A ppendix L\

B. LINEAR PHASE FIR FILTERS [REF. 3]

Let {h(n)} be a causal finite duration sequence defined over the interval
0 s n S N-1 having the linear phase symmetry property given by h(n) = h(N-1-n). The
z transform of {h(n)} can be written as

...........
......................................



-1
H(z) ==l\§.'. h(n)z™™® (3.1)
n=90
If N is even, then Eq.(3.1) can be rewritten as

_ (N2)-1 - -1 -n
H(z) ng 0 h(n)z™ + ng N/zh(n)z

Now applying the symmetry property of h(n) in the second term on the right hand side
yields

H(z) SN ANt h(N-1-n)z"(N-1-n)
n=0 n=0

which can be simplified to

H(z) = (:g )(;1 h(n) {2 + 7 (N-1-0)) (3.2)

If N is odd, then Eq.(3.1) becomes

H(z) = [(Nl;g/j]-l h(n)[z™® + Z'(N'l'n)] + h(ﬁz:-l—) z'[(N‘l)/zl (3.3)

If we evaluate Eqs.(3.2) and (3.3) for z= el® , we obtain the discrete Fourier transform
of the filter sequence h(n) defined as

. N-1 .
H(el®?) = nEO h(n) e }OD (3.4)

For the case when N is even, we then have the discrete Fourier transform
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n=0

[ 2h(n)cos[ @{n-(N-1)/2)}]] (3.5)

and for N odd, we obtain

1 = DN L CEVE o) coguinvyz G0

In both cases above, the sums in brackets are real, implying a linear phase shift
corresponding to a delay of (N-1),2 samples. Figures 3.1 and 3.2 show the direct form
realizations of an FIR filter with linear phase for both N even and N odd cascs.

x(n) O’ . / '/ )
»

0 3\ G-l
z-—lh< z'll‘ S <_'.z—:l_«
h (0) (1) h(2) Coh (-2 gn &-1)
v A v A ARE
Oy (n )4‘)‘ -4 ¥)< o B

Figure 3.1 Direct-form realization for an FIR filter with lincar phase (N =even).
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ASANAY

T
Yh(0) wa(l) h(2)

Ct—Pe—Pe—P«
y(n)

Figure 3.2 Direct-form realization for an I'IR filter with linear phase (N = odd).

C. LATTICE FILTERS [REF. 4]

The basic single section lattice structure is shown in Figure 3.3 where x(n) is the
x(n) and fj(n) and g)(n) are generally known as the forward and backward prediction
errors, respectively. The defining equations of the lattice are given by

fo(n) = g4(n) = x(n)
fl(n) = 0(“) + klgo(n‘l)

' 3 -~ Y -
gpn) = Kk Gim = g(n-1)

where kl is called the lattice reflection coelTicient. [f another section is cascaded with

the first one the resulting cquations for the next order prediction errors are given by
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fz(n) = fl(n) + kzgl(n'l)
g,(n) = kyfi(n) + g,(n-1)

Py
o

Ny
Substituting for f(n) and g;(n-1) from Eq.(3.7) yields t
fy(n) = x(n) + {k, +k,k,}x(n-1) + k,x(n-2) (3.8) N
Sl
or ::

oy
fy(n) = x(n) + bz,lx(n-l) + bz,zx(n-Z) 2
3

and ol
oY,

8,(n)=k,x(n)+ {k, +k k,}x(n-1) + x(n-2) (3.9) £

or <
RY.

~

gy(n) = bz,zx(n) + bz’lx(n-l) + x(n-2) ::

.\

where by | =k (1+kjy) and by 9 =kj. A
Thus, by induction, for a cascade connection of M lattice sections we have the general _.
expressions i
A

"

M , b

fM(n) =1=20 bM,iX(n-l) .-;.
gp(n) =i=‘¥0 bt M-iX@-) (3.10) 7

[ ",

3

'

where bys o=1. Eq.(3.10) represents the FIR filter type equations to obtain the Mth W
order forward and backward prediction errors. Now taking the z-transform of "* :

Eq.(3.10) yields o

Y,

e

X

\'v'

Ny
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M :
Fp(@) = I by’ X (3.11)

hY .
GM(Z) = 1=Lf) b.\[,\d-lz.l X(Z) (3 12)

For an unit impulse input, i.e., when X(z)=1, FM(Z) and GM(Z) represcnt the forward

and backward prediction error filter transfer functions, respectively, and

G‘L\A(Z) = Z-'\( FM(Y-l)

Figure 3.3 Lattice Section.

By inspcction of Figure 3.3 we sce that the mth stage lattice reflection cocfTicient
is equal to the FIR filter coefficient by 4 in Eqs.(3.11) and (3.12). In other words,

we have




-----

(3.14)

In fact, the FIR like prediction error filter coefficients can be iteratively calculated
starting from Eq.(3.14). The algorithm, to calculate the filter coefficients b\/I {» also

makes use of the well Xnown lattice propertv that an MM rder tuttice contains all

prediction filters of orders m< M. Now consider the mth section (I =m=M) in the

cascade connection of M lattice sections which can be described by the following

equations:

Frp @ + k2 G (@)
kK Fr-1(2) + z'le_l(z)

Fry(2) =
Gp(2) =

Eq.(3.16) can be rewritten as

Gm-l(z) = 2G(2) - zkmFm_l(z)

Substituting Eq.{3.17) into Eq.(3.15) yields

Fn(2)=Fpy (D + k(G (2)k ) F (2} (3.18)

Therefore, the (m-l)th order forward prediction error transfer function can be written
th

in terms of the m'" order forward and backward prediction error transfer functions as

follows:

F@ - by Oy
- K

Fm1(@ =

where X =", #!. Recalling Eq.3.13), that s,

Gpy(2z) = 2™ Fm(z'i) (3.20)

By substituting Eq.(3.20) into Eq.(3.19) we find that

g o B e g N o o o oy e T e e T




-m -1
Frn-1(2) = Fm(zl)'_kk%z “mZ ) (3.21)
m
Thus, from Eq.(3.21) we see that the next lower order polynomial Fh.1(2) can be
calculated xnowing F(z). Following the foregoing procedure we can (ind
k.
order polynomial Fy(z), we can determine all the lattice reflection coefficients | S

1=bm-l,m-1 from F_1(2), and also obtain F , +(z). This way, for a given Mmth

m=M, M-1, .., 2, 1. This procedure is known as the step-down procedure [Ref. 1],
and can be summarized as follows: Let the given M order polynomial be

Fy(@ = iﬁ’:} by 2 (3.22)

h

and by replacing M with m we have an m'? order the polynomial for m lattice sections

Ful®) = X bz

where m=M, M-1, ..., 2, 1. We now define another polynomial given by

Fra@h = 3 b2 (3.29)

As we step through the procedure from m=M to m=1 Eq.(3.24) can be expressed as

Ith

Define k,=b and obtain the m-1"" order polynomial as follows:

m,m




Fp(2) - kpzZ F - (z7])

. - 3.26
.: Fn1@ o (3.26)
Substituting Eqs.(3.23) and (3.24) into Eq.(3.26) yields
, _ -jbmiz-i - kmz.riniobm,m-izm.i
!. S b .z'l as !
:u ) . i m-1,1 "
. I - kg
*
B
K
¢
K 1 _ ,_2 m,iZ ~ Km. l2‘6’:11@-
) -
zobm'l'iz (3.27)
é 1 -
m
[}
[
i
§ Then, by equating the coefficients of like powers of z on bcth sides of Eq.(3.27), we
X - obtain the computational expression for the ( m-l)th crder polvnomual coefficients as
o
Y
&
) . b_.-k_b F (3.28)
m-1,i = 3 .
\ 1 - k%
1,
)
\ where m = M, M-1, ..., l andi = 0, 1, ..., m-], ky, = b, and ki< for a
X minimum phase polynomial F (z).
" D. LINEAR PHASE FIR LATTICE FILTER
In the foregoing we considered obtaining a lattice structure from a given FIR
: transfer function, and vice versa. In what follows we will deal with a special case of
FIR filtering, namely, the linear phase FIR filter. Let {h(n)} be a causal finite duration
y linear phase sequence defined over the interval 0 Sn<N-1. From Eqgs.(3.2) and (3.3).
. the Ztmansiorm of hen)! ocan te vritten Jas
K,
3 Hy. @ = Fy@ + 2P Gy (3.29)
D)
k)
M
"
)
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Figure 3.4 Linear Phase FIR Lattice Fliter.

. where Fy4(z) and Gy (z) are forward and backward filter transfer [unctions,

respectively, and D represents the number of unit dclays. We now consider the N odd
and N even cases separatcly.

N odd case: For N odd, Eq.(3.29) can be written as

HN-I(Z) = ag + a‘z‘l + azz'z + ...+ a(N-3),’22‘(N-3)/2 + a(;\j.])/zl-(‘\I-l)”?’

-{(N-2) N1

- . - VI - SN=3) ; -~ : k
](.\_Sx’lwl " ... .'1:/_ + JIZ J()/I

tagzl+ o+ a2 2+ 2(102) a e (D2

+ a\.3) 2z‘(N+l),’2 + ..+ azz-(z\’-3) + alz'(N'z) N aoz'(N'l)
* i
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3 Note that we are splitting the coefficient AN-1)/2 into two coefficients of value
' (l/2)a(N_l)/2 each.

H._\;_l(z) = ag + alz'l + azz'2 + ...+ a(N_3)/22'(N'3)/2 (3.30)
‘ . + (1/2) a(N_l)/zz'(N'l)/z + Z-(I\I.]')/2 [(1/2)a(N_l)/2

.

b -1 -(N-3)/2 -(N-3)/2

+ a(N-3)/22 + ... + aZZ (L )/ + alz (1 )/

3

j v a2

)

*

A

! Hn.@ = Fy@ + 20N D26y ) (3.31)
3

X where the order of the polynomials Fy(z) and Gm(z), M = (N-1)/2, and the
:* number of unit delays, D = (N-1)/2, the forward transfer function,

<

L]

R .

" FM@ = ag+ aiz' + o+ a0z N2 4 (11202522 (332)
.

)

: FM(Z-I) = ay + az + ...+ a(N_3)/22(N-3)/2 + (]/2)3(N_l)/22(1\-1)/2 (3.33)
[}

z and the backward transfer function,

1

)

"

D Gynz) = 2202 ps iy = i< - A~ -1 (3,24
" MZ = M D= a2 TN 22 $e2)
\

:: + ... + alz'(N‘3)/2 +802.(N-l)’12

K

u

|

h 29
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N even case: For N even, Eq.(3.29) can be written as
H.\-l(z) = a + alz'l + 322-2 + ..+ a(N_z)/zl-(I\-z)/z + a(N_z)/zz-N/z

+ ..+ azz'(N'3) + alz'(N-Q) - aoz-(N-I)

HN_I(Z) = 3 + alz'l

+ag b+ gz (VD2 (3.35)
+ Z."\I/2 [a(N_z)/z + ... + 322‘(N-6)/2

+ (N2 4 o (N2)2)

Ha. @ = Fy@ + 2NV2Gy(2) (3.36) :
where the order of the polynomials Fys(z) and Gy4(z), M = {(N/2)-1}, and the o
number of unit delays, D = N/2, the forward transfer function, :

FM(Z) = a + alz'l + 322.2 + ..+ a(N_z)/zZ-(N-z)/z (3.37) '

\J

FM(Z'I) = ag+ ajz+ a222 + ...+ a(N_z)/zz(N'z)/?' (3.38) y

and the backward transfer function. C
w

Gy@ = zND2F ety = 5y + o + 2z (NON2 (3.39) "

S

+ ..+ alz'(N"D/2 +aoz'(N'2)/2 3
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Figure 3.4 shows a linear phase FIR lattice realization where the filter output is
obtained by adding the M order forward prediction error, and the M order delayed
(by D unit delays) backward prediction error. Combining the discussion in this section
and that in Section (III.C), we can summarize the algorithm for converting a given
FIR transfer function into a lattice structure as follows:

(i) Find if N is even, or odd

(ii) For N odd: M' = (N-1)/2, D = (N-1)/2

(iii) For N even: M = {(N/2)-1}, D = N/2

(iv) From F M(2), obtain M reflection coeficients as discussed in Eqs.(3.22) to {3.26)
(v) Implement the lattice as shown in Figure 3.4

E. LATTICE REALIZATION OF A GENERAL FIR TRANSFER FUNCTION

In the foregoing we have considered a polynomial Fpy(2) with bM,O= 1. However, in
general we have bM,O’é I. In this section, we shall modify the lattice realization
algorithm presented in Section (I11.C) to suit an arbitrary FIR transfer function with
bM,o"l [Ref. 22]. The m'® order polynomials F (z) and G (z) can be obtained
from Eqs.(3.13) and (3.16):

Fo(@) = S Fm 1@ + k271G ((2) (3.40)

G(2) = Ky Fpy (D) + 521G 1(2) (3.41)
where the coefficients s;; = b gand k, = b
coefficients. Eq.(3.41) can be rewritten as

m,m are recognized as the reflection

Gp1@ = st 2G(2)- s ko 2 Fp () (3.42)
Substituting Eq.(3.42) into Eq.(3.40) yields
Fo(®) = s Fog(@ + s k(G (@) - K F oy (@) (3.43)

Thererore, the (m-i )[h order orward prediction error ransier iuncuon <an oe

th

written in terms of the m™" order forward and backward prediction error transfer

functions as follows:
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-"z-l Z --- > 2-1 z >
S
M
g, (k) g, (k)
0
1 gM(k)
Figure 3.5 FIR Lattice.
s F.(2)-k. .G (2)
Fro1(2) = —=F——4-10 (3.44)
m m

where sm# k- Substituting Eqs.(3.20), (3.23) and (3.25) into Eq.(3.44) yiclds

-i -m m-i
"z) , s[ggbm,iz " km? igé’m,m-iz
b 27t =
i m-l,1

2 2
P
n - .
- -i
-1 . Sm iZObm,iz -k ié’m,m-iz
20bm_l'iz" = (3.45)
2 2
m - k m
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’ From Eq.(3.45), we obtain the computational expression for the (m-l)th order
o polynomial coefficients is

K . s . b_.-k. b :

N L= M MImm-t

! m-1,i 2 2 (3.46)
’ m - ¥nm

.- ..

wherem = M, M-l, .., landi =0, |, .., m-l, kp, = bnm Sm = bmo and Sm> km
for a minimum phase polynomial F(2). It may be noted that s, = 1 form = 1, 2,

Al

.., M-1. This indicates that we have only one s-coeflicient, i.e., SM» Which requires an

-

extra multiplication in the M Jattice section as shown in Figure 3.5.
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IV. LMS ALGORITHM

A. INTRODUCTION )

Conventionally an adaptive filter is composed of a tapped delay line or
transversal structure with adjustable coeflicients or weights and an adaptive algorithm ’
which updates the coeflicients continuously based on some performance criterion.

The design of a fixed coefficient filter is based on the prior knowledge of both
signal and noise. Adaptive filters, on the other hand, have the ability to adjust their
own parameters automatically, and their design requires little, or no a priori knowledge
of signal or noise characteristics [Ref. 14]. However, the designer has to choose the
order of the filter and the type of the algorithm. Also the adaptive filter usually
requires a large initial transient time (i.e., the initial filter convergence period).

For stationary stochastic inputs, the mean square error, the difference between
the fiiter output and an externally supplied input called the "desired response”. is a
quadratic function of the filter coefficients, a paraboloid with a single fixed minimum
point that can be sought by gradient techniques [Ref. 16].

In the previous chapter we showed that the operation of a multistage lattice filter
is completely described by specifying the sequence of reflection coefficients that
characterize the individual stages of the filter. In this chapter we briefly discuss the
least-mean-square (LMS) adaptive algorithm that results from attempting to minimize k
the mean square error and present a summary of some LMS algorithms for lattice that
have been reported in the literature. Also included are the computer simulation results.

The least-mean-square (LMS) adaptive algorithm minimizes the mean square
error €(k) by recursively altering the filter coefficient vector B(k) at each sampling
instant. The original Widrow-Hoff LMS algorithm is B(k+ 1)= B(k)+ 2pe(k)X(k),
where y is a convergence factor controlling stability and rate of adaptation [Ref. 15].

The algornithm s based on the method of steepest iescent, moving “tX. n ~ropornon
10 the ‘nstantaneous iradient :stimate of the mean square error. .

When the filter input is stationary, the backward prediction errors are orthogonal
to each other, with the result that the successive stages of the lattice filter are
decoupled from each other [Ref 8. This means that the global optimization of a

multistage lattice filter may indeed be accomplished as a sequence of local optimization o

¢ A A AT AT A AT N A A AT A At e e eenan
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problems, one at each stage of the lattice filter. Accordingly, it is a straightforward ’
matter to incrcase the order of the lattice filter by simply adding one or more stages P
without affecting the earlier design computations. The successive orthogonalization 2,
provided by the lattice oflers advantages in adaptive convergence rate which cannot be :
i achieved with tapped delay lines [Ref. 17,18]. :
B.. SUMMARY OF THE LMS ALGORITHM o

The LMS algorithm uses an estimate of the gradient of the mean square error obtained
from the adaptive linear combiner which is a combination of a transversal structure

-F.

and an adder. The adaptive linear combiner can be shown in two basic ways, 73
depending on whether the input is available in parallel form (multiple inputs), or in 2
serial form (single input) [Ref. 6). §
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Figure 4.2 Serial Form.

In the following we present a brief derivation of the LMS algorithm. Let us choose the
single input form, then the filter output is given by

y(k) = by(k)x(k) + by(k)x(k-1) + ... + by (K)X(k-N+1) 3
N-1 ]
= i}:=0bi(k) x(k-i)
= xT(k) B(k)

= E'F(I\');Qk) 40

where X and B are the input signal vector and the filter coefTicient vector, respectivcly
and (N-1) is the order of the filter. The input signal vector X and the filter coefTicient
vector B arc defined as
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Xk 50
X(k) = B(K) =
XN+ 1) N1 K)

Therefore, the output y(k) is equal to the inner product of X(k) and B(k).
The error e(k) is defined as the difference between the desired response d(k) and
the actual response v(k),

e(k) = d(k) - XT(WB(K) = d(k) - BTWZ(K) (42)
The purpose of the adaptive algorithm is to adjust the filter coefficients of the adaptive
linear combiner to minimize the mean-square error. A general expression for mean
square error as a function of the filter coefficient values, assuming that the input
signals and the desired response are statistically stationarv and that the filter

coefficients are fixed, can be derived in the following manner [Ref 6]. The squared
error is

eX(k) = d¥(k) - 2d(0X T(0)B(K) + BT (KXK)XT(K)B(K) (4.3)

Taking the expected value of both sides yields the mean square error,

Ele2(k)] = E[d%(k)] - 2 E[d()x T(k)] Bk) + BT(k) Ex(0)x (k)] B (4.9)

Defining the vector P as the cross-correlation between the desired response and the
‘nput vector, we have

P = E[d(k)X(k)] (4.5)

Similarly the input autocorrelation matrix R is defined as
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B = E[Xx XT(k)] (4.6)

Thus the mean-square error can be expressed as

e(k) = E[e?(k)} = E[d%(k)]- 2 P! B(k) + BV (k) B B(K) (4.7)

The gradient Ve(k) of the mean square error function is obtained by differentiating
Eq.(4.7) with respect to the filter coefficient vector as follows:

[ EL(K)] |
&bk
ve(k) = . = 2P +2R B {4.3)
3E[e¥(k)]
abN_l(k)
. e

The LMS algorithm is an implementation of the method of steepest descent.
According to this method, the next filter coefficient vector is equal to the present filter
coefficient vector B(k) plus a change proportional to negative of the gradient, V&(k):

B(k+1) = B(k)- n ve(k) (4.9)

The parameter p is the factor that controls stability and rate of convergence. In other
words, the first term on the right hand side consists of the past information and the
second term represents the new, or updated information.

The LMS algorithm estimates an instantaneous gradient in a crude but efficient
manner Hv assuming that e2k), he square of 2 singie error sample. is an esumate of
e mean-square error and v differentianng -::'k) Wil respect to 3(k). The estumared

gradient is given by the following expression
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rée(k)
3bg(K) 3 (k)

2e2(k) de(k)
LabN-l(k’)_' I\abN-l“ﬂ

The estimated gradient components are related to the partial derivatives of the

instantaneous error with respect to the filter coefficient components. Thus the

expression for the gradient estimate can be simplified to

Tek) = -2 e(k) X(K) (4.11)

Using this estimate in place of the true gradient in Eq.(4.11) yields the Widrow-Hoff
LMS algorithm

B(k+1) = B(k) + 2 pek) X(k) (4.12)

Since the filter coefficient changes at each iteration are based on imperfect gradient
estimates, we would expect the adaptive process to be noisy, that is, it would not
follow the true line of steepest descent on the performance surface. The LMS algorithm
can be implemented in a practical system without squaring, averaging, or
differentiation and is elegant in its simplicity and efficiency. Each component of the
gradient vector is obtained from a single data sample without perturbing the filter
coefficient vector.

C. ADAPTIVE LATTICE ALGORITHMS

The »narameters -0 uapdate in 1 multistage lattice 1re its reflection coerficients.
Severai 1gorithms aave deen 2roposed N the literature Or Ipgalng che  ailce
reflection coefficients [Ref. 7,8,17,18,20,23-28]. In this section we briefly summarize
some of those algorithms. Consider a lattice filter of order M. For stage m of the

filter, the flow of signals is described by the following pair of equations.
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Figure 4.3 A Single Stage of Lattice Fiiter.
3
| ) = Loy () * ey B (D) (@.13)
! = -1) +
2n(k) = g1 (k1) + K p 6o 1K)
where m=1,2, ... ,\M
[} For stage m, the forward reflection coeflicient is denoted by Kk, r and the backward
i reflection coeflicient is denoted by Kb f(K) and g (k) are the forward prediction
error and backward prediction error of stage m respectivelv. Before presenting the
adaptive aigorithms [or the lattice, let us guickiv summarize some non-adapuve
reflection coetficient estimation methods.  Later on we can obtain the adaptive
¢
updating equations as approximations to these methods.
l
¥
¥
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1. Non-adaptive Methods
When the lattice coefficients have fixed, non-adaptive values, several methods
have been proposed for computing these values as functions of the correlation statistics
of the input. Two of these which are based on mean-square error (MSE) minimization
(Ref.28] are given bejow.

Method 1 : In this method, we choose km.f to minimize the mean forward
prediction error power, E[fzm(k)] and kppto minimize the mean backward prediction
error power, E[gzm(k)]. Here we give the final equations for km,f and Km.b without
going into the details. The forward and backward reflection coefficients are given by

__Elfy(K)gp (k-1
m,f Elgl 1 (k-1)]
_ _Elfp(K)gm 1 (k-1)]
km.b E[me- l(k)]

(4.14)

where both kmf and k are obtained from the cross-correlations between the
td

m,b
l)th

(m- order forward and backward prediction errors normalized by respective

prediction error powers.

Method 2 : For a single channel lattice using real data and coeflicients we can,
however, show that km,f= km,b=km' Based on the condition that km,f'-' km,b= km,
we can now minimize either E[fzm(k)], or E[gzm(k)] in order to obtain an optimum K.
However, it seems more logical to minimize the sum E[fzm(k)]+ E[gzm(k)] as suggested
in [Ref. 28]. The resulting reflection coefficient equation in its final form is given by

o DEf gy iUl
"n.{ C,’[‘l .

m'i“\k'}— E{g-'tn_'l'k'izi

where we have normalized the cross-correlation term with respect to the sum of mean
prediction error powers. In both of these methods, the coefficients at stage m can be
computed independently of those following that stage. Thus, optimum values can be
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computed successively along the structure without affecting tﬁe other coefficients. This
phenomenon lends to the modular nature of the lattice structure.
2. Adaptive Methods

An instantaneous, gradient-descent adaptive algorithm minimizes a mean-
square error criterion can be derived for a generalized problem. An adaptive lattice
structure is suggested by incorporating time varying coefficients km,f(k) and km,b(k) in
the lattice and generating algorithms for the two methods described above. The
resulting procedures are :

Method | : Corresponding to method 1 of non-adaptive procedures metioned
above, we can obtain the following update equations

ke fk+1) = Koy (k) + = L o £ (k) g1 (k-1)]

m-1, (4.16)
K D = K p8) + —— 5 i 10 8 (0]

m-1,g .

where p is an adaptive step size parameter, A is a positive weighting constant, and the
forward power estimate at the (m-l)th stage, czm-l g(k), is
]

6?1, (0 = A o? g (k1) + (1-M) [ 1 (k-D)]

and the backward power estimate at the (m-l)th stage, °'2m-1 p(k), is

czm_l,g(k) =2 czm_l,g(k-l) + (1-0) [, (K)]

Method 2 : Eq.(4.15) can be approximated to obtain a recursive update equation

as ‘oilows:

Kk +1) = kp(K) + B (E(R)gm. (k1) + £ 1 (K)gy (K] (4.17)
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For the basic structure of the single-channel lattice, ie, k7= km,b= k. the reflection
coefficients or filter coefficients k (k) may be updated using a modification of the
LMS algorithm of the LMS algorithm [Ref. 17,20].

kp(k+1) = ki (k) + -;i-“——— gy 1(k-1) + i 1 (g K] (4.18)
m-l(k)

where ozm_l(k) is the power estimate at the (m—l)th stage. ~Now the updated power
estimate is

6210 = A aZ (k1) + (10 [g2 (k1) + £ y(K)] (4.19)

where A is a positive weighting constant satisfying the criterion 0 <A <1 then controls
the bandwidth of the filter and the resulting power averaging time. A power estimate
is required at each stage in the lattice due to the fact that the forward and reverse error
sequences have decreased power with increased stage number.

Method 3 : A third successful method of implementing an adaptive algorithm for
FIR lattice structures has been reported by Griffiths [Ref. 17,18]. This algorithm has
been originally discussed for a noise canceller application. The foru of the lattice
noise-cancelling adaptive filter is shown in Figure 4.4. The lattice noise-cancelling
adaptive filter consists of an M stage linear prediction lattice for the reference signal
x (k) together with a set of tap coeflicients V (k) which provide the noise-cancelling
subtraction paths. Griffiths’ algorithm is briefly presented in the following. The
update equations for k (k) are given by

, . n
ke85 1) = k() = ——— (.

(k)
T m
T m. (1K)

Sm- (k- 1) = gyt (K] (4.20)

where the power estimate at the (m-l)th stage, azm_l(k) is

o210 = Aa (k-1) + (1-0) [ (k-1) + 2 (k)] (4.21)
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Figure 4.4 Lattice Form Implementation of Noise-cancelling Filter.

Each coeflicient V (k) can be determined independently of V (k) for n>m, because of
orthogonalization provided by the lattice. Thus the resulting algorithm is

PRy o

. »

e
y v 4y S

Vo (k+1) = V_ (k) + -?-% (€, (K) g, (K)) (4.22)

m

-, '-'--' *

I

where associated power measurement yzm( k) is

T (k) = M2 (k-1)+ (1-0) (g (k-1) g (k-1)] (4.23)

and &, ,(k) is the mth stage error signal as shown in Figure 4.4. X

44 P

40

s

'y

~ e - W, e

.-~
TAT AR

WA LE LR Y LA N o) "-'(-l S Pl LY \’1"-‘."\ ™ SN -l".("i"d“f'/“-f“'."'-"- "--_-'*.
V0 0 600 00 0t % N, . A et ot A A AN  A A L R 3 Wy, n >

v



D. SIMULATION RESULTS
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Figure 4.5 System ldentification Experiment.

For the purpose of computer simulation, let us consider an approximate

algorithm given by

it

km(k+l) = km(k) + -?-r;l(—k)—

4

¢
L}
‘

where

o (k) = ho?_ (k-1) + (1-)) g% 1(k-1)

) Tt T T LR Y S LV R S T S A S L WS RIS u'.'t' -'.'t.
S NN N Y, R R AN AT R NN

Al I

(2. 1 (kD) e(k)

(4.29)

(4.25)

-------------




The configuration used in the simulation is a system identification experiment as shown
in Figure 4.5. The fixed filter transfer function considered is given by
H(z) = 1-089 27! + 0.2522

The convergence performance of the LMS algorithm (as given by Eq.(4.24)) can be
observed by plotting the error, e(k), versus the update iteration, k. called learning
curves. The input x(Kk) to both fixed and adaptive filters is a white noise sequence with
zero mean and unit variance. Figures 4.6 to 4.8 show the learning curves for the above
example where we have used three different values for the adaptation constant, u. In
the next chapter, we derive a new algorithm for updating the reflection coeflicients,
based on the least mean square principlc and the steepest descent algorithm.
Improvement in convergence speed will be shown using the new algorithm.
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V. ADAPTIVE LINEAR PHASE LATTICE ALGORITHM

A. INTRODUCTION

In Chapter III we dealt with the realization of fixed coefficient FIR lattice filter with
both linear and nonlinear phase characteristics. We reviewed the basics of LMS
algorithm and some adaptive lattice realizations reported in the literature in the
previous chapter. The three adaptive lattice algorithms discussed are direct

approximations of their non-adaptive counterparts. None of them estimates a gradient ;
as required by the LMS algorithm. In this chapter we present a derivation for a new -
LMS based FIR adaptive lattice algorithm and extend it to the linear phase case as v
well. The new algorithm is then used in the estimation of spectral lines in white noise. '
Results of simulation are included.

B. LMS ALGORITHM FOR THE FIR LATTICE
From Eqs.(3.40) and (3.41) the FIR lattice equations can be written as

*d

;

Fn(k) = s £ 1K) + Ky, 8y g (K-1) (5.1) -
8m(X) = s 8oy (k1) + kpp £ 1K) (5.2) 2
where m=1,2,....M, Sm=1 for m#M and km are the lattice reflection coefficients. A :
realization of Eqs.(5.1) and (5.2) is shown in Figure 5.1. The lattice input is X
x(k) = go(k) = fp(k). The output of the filter is
K) = fiy(k '
¥(k) = fiyq(k) (53) :
Therefore, :he errer, e(Xk), is given by \
e(k) = d(k) - y(k) )

y (5.4) K
\
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Figure 5.1 Adaptive FIR Lattice Filter.

where d(k) is the desircd signal. The objective is to minimize .he mean square error

J= E{CZ (k)} (5.5)

The gradient of J with respect to k, and s, respectively, are given by

4 (<
) i>0)

and
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a]

=— = 2 E(e(k) fyy.y(K)} (5.7)
M

Thern the LMS algorithm can be formulated as follows:

kk+1) = ki(k) - p(——
k:
Oy(k)

= K0 + 2 Blet®) (5= ) (5.8)
]

dy(k)
9%;

T K + 2 py e(k) (= —

and

a]
spk+1) = SM(R)'"s(?)

M
= sp(k) + 2 ng Efe(k) fy_ (K0} (5.9)

3 = sp(K) + 2 g e(K) fyg.q (k)

where Wy and J are the adaptation constant, and we have replaced the true gradient
by its instantaneous estimate. Defining

dy(k
2K) = y.(k) >
oK
yields
Ki(k+1) = ki(k) + 2 py e(k) z(k) (5.11)
sMk+1) = syp(k) + 2 pg e(k) fq (k)
S0
b oo .'l... .. ; .".‘ . % .-- \}?, R \' 'ﬁ'_,-\.-'i.f Y s '\'.,-*-.r \J'-P.r‘-}-' --'-"' :.r\ e

AN AN
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where j=1,2,...,M. The next step is to estimate the gradient vector z(k). For this

purpose, define

of.(k)
.. = b
O, () o
and
_ Ogi(k)
¥io = ok,

Then from Eq.(5.3) z(k) is given by

= SM(k) (DM-I,](k) + kM(k) ‘}’M-l,](k.l) + gM_l(k-l) 6.\4,]

(3.12)

(5.13)

(5.14)

where SM'j=(6kM/6k]-). Substituting Eqs.(5.1) and (5.2) to Eqs.(5.12) and (5.13) then

we have

®; (k) = sk

-1( )

+kk)—g—1-i——

' k-1 k
¥, %) = <kH—1(——)- * Kk k](’

“herefore,

D, (k) = s(k)®
Y00 = s

where

(k) + k()P
(k-1) + k(k)®

i-1,)
i-1,j

i-1,j
i-1,]

ok;
g (e
]

a .
fi—l(k)'ﬁ'ak,
j

(k-1) + g;_ (k- 1)5
(%) + £ (003

(5.15)
(5.16)
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5. = 5 (5.17)
9] k]

is the Kronecker delta function, and i=1,2, ... M and j=1,2, ... M. If i=0, then
Eqgs.(5.15) and (5.16) are

D (k) = om (5.18)

%;

where j=1,2, ... ,M. Figure 5.2 shows the computation of gradient elements for the
adaptive FIR lattice algorithm.

From the Eqgs.(5.13), (5.16) and (5.19) we have

where 1 <i<j-1. The computations of gradient elements at each case of j= M,M-1, ...
,1 are as follows:

Case j=M :
Do M) = ¥o k) = 0
LSRVILUE S VIR SESE SHRVIES EF IRTE SR
¥ M) = S0P, kD) + kRO \(K) + £ (K03 p

where i=1,2, ... , M. From Eq.(5.20), every gradient element equals to zero except final
stage elements and gradient elements of the final stage are
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Figure 5.2 Computation of Gradient Elements for the Adaptive FIR Lattice Algorithm.
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¥ M) = sp(R'F ppoq kD) + k(@ oy g M(KY + g 1 (KD y

i

Applying the Eqs.(5.17) and (5.20) yields

iy
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2 Op; MK = gypoq(k-1) (5.21)

g Yrum® = fy.q® (5.22)

R Case j=M-1 :

-.

Pom-1K) = ¥op. (k) = 0

7 Qi M1 ®) = 50Dy M) + KOOy vk + g (k185 v

0

2 Fim-100 = si0¥; (kD) + KRI@ g vy (k) + 6 (K)S; vy

b where i=1,2, ... ,M. Applying the Eq.(5.20), last two stage elements are considerable,

if i= M-1, then we have

(: P\, M1 = sy Py v (8) + Ky (K ygg v (kD) + gyak-1D8ygy Mo

Y1, M1 = sy ®¥ o Mo1-D + Ry 1Ky MK + By a8y g M.

Applying the Eqs.(5.17) and (5.20) yields

:

; Oy M1®) = gD (5.23)

PuoMa® = fyak) (5.24)
And the last stage terms are

Py, M1 = sl P M1 = By v M8 D 7 gy (B U8y Mg

: ¥, M1 = sMEF v Mg+ Ky(K)@pgp M-1€(K) + By (K08 M-

, Using the Eqs.(5.17), (5.23) and (5.24) yields
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Py MKy = sp(k)gpgalke1) + Kpq(k) fyg p(k-1) (5.25)
Fr MK = spOfya(k-1) + ky(k) gyga(k-1) (5.26)

Finally,

Case j=1:

1) = P00 = 0

D; 1K) = (0@ g 1 (&) + K(K)F; ) y(k-1) + g 1(k-1)5; (5.27)
¥ 1(0) = si®¥; ) k-1 + k@ (k) + (K8 ) (5.28)

where i=1,2, ... M.
The LMS algorithm derived in the foregoing can be summarized in Table 1.

Simulation Results :

The performance of the algorithm summarized in Table 1 has been observed by
computer simulation. The configuration used is the system identification experiment as !
discussed in Section (IV. D) using the same fixed coefficient filter. The learning curves "
obtained using the new algorithm are shown in Figures 5.3 to 5.5. Comparing these
with the learning curves in Figures 4.6 to 4.8, which are obtained using approximate
algorithms, we observe significantly faster convergence rate for the new algorithm.
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TABLE 1
LMS ALGORITHM FOR THE FIR LATTICE

Initialization:
E(0) = O
Sm(O) =1

Lattice:
x(k) = £45(k) = gp(k)

£p(R) = sp(K) £, 9(K) + Kp(k)gpoq(k=1)
In( k) = sp(k)gp_1(k=1) + kp(k)f,_1(k)
m=1, 2, ..., M

Y(k) = £y(k)

Update Equations:
kj(k+1) = ky(k) + 2 [pye/0% (k)] e(k) zy(k)
J

sy(k+1) = sy(k) + 2 [py/6° (k)] e(k) fy.1(k)
where M, and Mg are the adaptation constants,
c’kj(k) = A czkj(k-l) + (1-}) D%y (k)

and

a2g(k) = A 62 (k-1) + (1-M) £2y_1(k)

are estimations of power in z.;(k) and fM_l(k),
respectively and A is a positive weighting constant,
0<A 1.

Gradient Vector Elements:

+ gl_l(’{‘l)dl,:

‘PI,J(:{) = Sl(k)‘yl_l’J(k"l) + kl(k)(pl-l,j(k)
* £5.10%)8; 4

z5(k) = @y y(k)
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o
C. LINEAR PHASE FIR LATTICE ALGORITHM .
We now extend the LMS algorithm derived in the previous scction to the linear
phase FIR lattice filter. L
From Eq.(3.29), output of the linear phase FIR lattice can be written as o
y(k) = fy (k) + gyy(k-D) (5.29) :‘_
The lattice input is x(k)=fi(k)=gy(k). Substituting Eqs.(5.1) and (5.2) in the output
equation of the filter yields N
= sM M ® + eMaqk-D-1)) T kM [fm-1(k-D) + gy (k-1 2
3
<
and the error, e(k), is given by $

n

58

'I
’
.l
p
'
)
y Y




£ 193]

d(k)
x (k) pa
N z >
_T vy e (k)
-- =P
g

Figure 5.6 Adaptive Linear Phase FIR Lattice Fllter.
e(k) = d(k) - y(k) 31)
= d(k) - sy [fv1(K) + BM-1(k-D-1)) - Bt (EM-1(K-D) + gyg g (k- oy

where d(k) is the desired signal. A schematic of the linear phase FIR lattice realization
is shown in Figure 5.6. From Eq.(5.31) we see that y(k) is a function of both sy and

kpg- But fag_1(k) and gy ((k-1) are functions of ky_ ; and so on. Therefore, in order
to minimize the mean square error, we define a cost function

Ou L1

;2 ..
=E{e k) (5.32)
and a gradient element
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dy(k :

2(k) = ";( ) (5.33) b

5 o

(]

Then following the treatment in Eqs.(5.6)-(5.11) the LMS algorithm for the linear b
“«

phase lattice can be written as "
'

)

k]-(k+ 1) = kj(k) + 2 py e(k) z(k) (5.34) "
sMKT 1) = spqik) + 2 pg e(k) {fpg.q(K) + gyp.1(k-D-1)] ,
e

where j=1,2,....M. From Eqs.(5.29) and (5.30), the gradient vector z(k) is given by

N

2(k) = Dy (k) + Py (kD N

(k) M,j(K) M,j(k-D) (5.35) N

= SM(k) IOM'I,](k) + ‘PM'I,](k-D-l)] + kM<k) [(DM-I,](k.D) _,

-. .

where 8y ;=(0ky/dK;), and @p,; and ¥, ; are obtained on the same lines as in

Eqs.(5.15)-(5.17). The resulting LMS algorithm is summarized in Table 2.
N

Simulation Results : '_:_'.
The performance of the algorithm summarized in Table 2 has been observed by N v

= 1

computer simulation. The configuration used is the system identification experiment as
discussed in Section (IV. D). We have used two different fixed coefficient linear phase :::
FIR filter examples, one with N even and the other with N odd. They are :‘_'-'.
Hy(z) = 0.154 + 0.462z°! + 0.4622°2 + 0.1542°3 2N
and K
Hyz) = 0.15- 045271 + 03622 - 0.45273 + 0.1524 NS
The .earning curves obtained using :he new algornithm ure shown in Figures 3.7 1o 3.10. l-:"..-
X
igures 3.7 and 3.3 are obtained learming curves with lincar phase FIR transier :.:
function H4(z). Figures 5.9 and 5.10 are obtained learning curves with linear phase N
FIR transfer function Hy(z). "E
v
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TABLE 2 :;

LINEAR PHASE FIR LATTICE ALGORITHM x

v Initialization:
K(0) =0

sy(0) = 1 :

Lattice: !

x(k) = £o(k) = gg(k) >
£a(k) = sp(X)Ep (k) + kp(k)gy_q(k-1) :
ap(k) = sp(k)gp_1(k-1) + ky(k) £y q(k) 2
m=1, 2, ..., M :
Y(k) = sy [£y_1(k) + gy_1(k=D-1)] + ky [£y_1(k=D) 7

X

+ gy-1(k-1)]
Update Eguations:

ki(k+l) = ky(k) + 2 [uk/czkj(k)] e(k) z5(k) 3
sy(k+1) = sy(k) + 2 [pg/0’g(k)] e(k) [fy_1(k) R
+ gy-1(k=-D-1)] ;;
where j, and pg are the adaptation constants, "
czkj(k) = A czkj(k-l) + (1)) [®y j(k) +¥y 4(k-D)]2 £
and oty
2 =% 62 (k- - ho1y12
6“g(k) 6°g(k=1) + (1-A) [£fy_1(k) *+ gy.1(k-D-1)] ,
s
are estimations of power in z;(k) and 2]
[fM_l(k)+gM_1(k-D-l)] ,respectively and A is ‘;
a positive weighting constant, O0<A<S1. »
Gradient Vector Elements: L
oO,j(k) = ‘l’olj(k) = 0 >
(Dl,‘(k) = sl(k)(bl‘:,‘(k) + 1{1(}{)\?1_1’,(1{‘1) E:::
T 5ia(R-10y kv,
* £5.1(R)8y 4 :
Zj(k) = lej(k) + ‘PM,J(k-D) f
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D. SPECTRAL ESTIMATION

In this section, we extend the linear phase FIR adaptive lattice algorithm derived
in the previous section to the estimation of spectral lines in white noise. The spectral
estimation problem is some what different from the system identification experiment
that we have been considering so far. In a typical spectral estimation problem. we are
given d time series and we need to estimate its spectrum. A suitable configuration that
is frequently used for this purpose is shown in Figure 5.11. Comparing this with
Figure 4.5, we notice that we have the given time series at the input of the adaptive
filter and the filter updates its coefficients to minimize the mean square output. In
doing this, we assume that the input process x(k) has been generated by passing a
white noise sequence through a filter, say I(z), and the adaptive filter attempts to
realize an inverse filter, say H(z)=1/I(z). Considering that the adaptive filter has
sufficient degrees of freedom, the output of the filter will be a white noise sequence.

The adaptive algorithm summarized in Table 2 can be used in spectral estimation

after appropriate modification. In the present case we minimize the cost function, >

J = E{y¥(k))

¢
rather than J = E{ez(k)}. The resulting update equations can be shown to be
L]
K(k+1) = k() - 2 (/0% (K)] (k) zi(K) (5:36)

) i ] 3

sy(k+ 1) = syq(k) - 2 [ps/czs(k)] e(k) [fyg.1(k) + gy 1(k-D-1)] (5.37) :
where zj(k), 6y .(k) and 6 (k) are as defined in Table 2.
Using the] adaptive algorithm in Eqs.(5.36) and (5.37) we can obtain values of the X
reflection coefficients and the s\g coefficient. We then obtain the equivalent ~
oolvnomial. B(z), by zoing through the standard step up procedure ziven bv ‘Retf. L oy
"no T m N

[

nm = Km 3;_
bmi = SmPme1i * km 5m-1,m-i ':

"2
>,
)
3
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where i=1,2,...m-1 and m=1,2,..,M. Finally the required linear phase transfer

function is obtained as follows:
Hn. @ = Fy@ + 22 Gy@)

where F((z)=B(z) and Gp,(z)= z'MB(z‘l). The spectrum is computed as follows:

S(O = . .
| hg + hy 0 4+ 4 hn- eri(n-1o 2

where @=2nf, and f is the normalized frequency (with respect to the sampling
frequency) in the range, 0 S<0.5.

Simulation Results :

The input process x(k) consists of a signal in noise, given by
x(k) = s(k) + w(k)
where s(k) may be a single, or multiple sinusoids and w(k) is a zero mean unit variance

white noise sequence. In the following we consider several examples using parameters

ranging from a single sinusoid to 4 sinusoids, SNRs from 30dB to 10dB, and filter
order, M, from 2 to 30.

Example 1: We consider a single sinusoid given by

x(k) = 2 cos(2nfk) + w(k) (5.38)

where f=0.15, SNR = 10dB.

Figures 3.12. 5.13, 2,14, and 3.15 are plots of {requency spectrum with different

order of lattice M and adaptation constant j.

Figure 5.12 is the plot of the case M=2 and p=0.015. We see that the peak is

at f=0.15 and no spurious responses.

Figure 5.13 shows the frequency spectrum of M=4 and u=0.01. We observe

that one peak is at f=0.15 and a spurious response whose magnitude is about -53dB at
f=0.37.
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N
. “Y
Figure 5.14 shows the frequency spectrum of M = 10 and p=0.03. There arc onc :
peak at £=0.15 and four spurious responses at £=0.05, 0.25, 0.35 and 0.45. The largest .
spurious response is about -15 dB at f=0.4S. -
Figure 5.15 shows the frequency spectrum of M =20 and p=0.03. There arc one N
peak at f=0.15 and nine spurious responscs. Thc largest spurious responsc is about :
-27 dB at f=0.125. .
Through the Figures 5.12, 5.13, 5.14, and 5.15 we can determine that the best N
N
model order to detect the one sinusoidal signal is M =2, b
Next, we fix the order ot lattice M, adaptation constant ft and iteration number ;l

k. Figures 5.16, 5.17 and 5.18 are the plots of frequency spectrum with changing the
signal to noise ratio (SNR).

Figure 5.16 is the plot of M =20, p=0.05, k=13000 and SNR=730dB. There is a N

Ay

Ry -

peak at f=0.15 and the largest spurious response is about -27dB at f=0.125. E
66 4
<




Figure 5.17 is the plot of M =20, p=0.05, k= 5000 and SNR=20dB. The largest
spurious response at f=0.425 is larger than the desired response. At this case, we
cannot estimate the frequency of sinusoid.

Figure 5.18 is the plot of M =20, p=0.05, k=3000 and SNR=10dB. Three of

Tyt ¥
r,

f o

the spurious responses are larger thoen the desired response. The desired respense is S
about -13dB. N
From Figures 5.16, 5.17 and 5.18, if the SNR is getting smaller then estimating ';
sinusoidal frequency is more difficult. x
Example 2: Next, to estimate two sinusoidal frequencies in noise, set the input x(k) as
g

x(k) = /2 {cos(2nfik) + cos(2nfyk) } + wi(k) (5.39) E

»

A

where the normalized frequencies of signals f; =0.15 and f,=0.25 and set SNR=30dB. v
Figure 35.19 shows the frequency spectrum ¢f M =4 and u=0.02. There are two .
peaks at f; =0.15 and f,=0.25 and no spurious responses. :
Figure 5.20 shows the frequency spectrum of M =20 and p=0.022. There are oy

two peaks at ] =0.15 and £,=0.25, and eight spurious responses. The largest spurious :

response is about -20dB at f=0.375. 7

From Figures 5.19 and 5.20, the best model order to estimate the frequencies of ‘_'(

two sinusoidal signals is M =4, IE
A

Example 3. Next, to estimate four sinusoidal frequencies in noise, set the input x(k) as l:-
Y,

x(k) = 2{ cos(2rfyk) + cos(2nfyK) + cos(2mfzk) + cos(2mizk) } + wi(k) (5.40) 5

"vhere “he normalized requencies of signals 7 =003 3 =945, H=025 7 =033 and

set 3NR = 20dB. Ny

Figure 5.21 shows the frequency spectrum of M =8 and p=0.015. There are four )

peaks at f; =0.07, f,=0.15, f;=0.27 and f,=0.375, and no spurious responses.

Figure 5.22 shows the frequency spectrum of M =30 and u=0.014. There are
four peaks at f; =0.05, f5=0.15, f3=0.25 and f4=0.35, and eleven spurious responses.
The largest spurious response is about -23dB at f=0.45.




From Figures 5.21 and 5.22, the best model order to estimate the frequencies of
four sinusoidal signals is M = 8.
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Figure 5.12 Frequency Spectrum (1 sinusoid, M =2, p=0.015).

W o8 0T SR CT N -«

A N R O S L NS R C R RN T T A AT AT AN AT SR S
T A g A N N N e N AN A N AN MNP SRR SRS I IV



2 4 (1 N 3 LR ] 4 9. \ W14 . \J - A L + L] ' A L) \J * ] #
Q
o
|
e
-
N
gy |
M
Eo
=t
oo
e
= ©
Thh
< |
=
o
v ]
™~
[}
o
[ 2]
- ]
! T T v N : T Y T —
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.38 0.40 0.45
FREQUENCY
Figure 3.13  Frequency Spectrum (1 sinusoid, M =4, u=0.01).
<
o
©
T
L]
m
ge
S’
&8
ai i
bow |
Eo
Z 0
(& N o]
< !
= .
° !
\
L
2 / \ '
2 f
5 j

0.00 0.05 .10

015 020 025 030 0385 040 045
FRIEQUENCY

Figure S 14 Frequency Spectrumitl sinuneid, M= [ p=003,

(A}

By

{nc-{

4N

‘%

\ J

..
A

L4 .
WAL RO

ERARERERT oARARIRAN?

S L AL S

\

”
’
e
o,
L4




“w b kb o s s tm o bil b ik el ik Cal il Sal Sat 22t ab tat.t a0t gh et Al tpt tal i gh Cal o gt iy gt pta génate. Y

u; q
[ oud 9
:: )
(%Y
W2 (-]
, =3
'
. )
X Se
* =5
[N an
i =]
" P
S e
:" 2%
! ;
'. °
) 0
o
". '
o
» o.
¢ ? Y T
' 0.00 0.05 0.10 0.15 ozo 025 0.30 0.35
Py FREQUENCY
iy
L3
A Figure 5.13 T[requency Spectrum (! sinusoid, M =20, p=0.03).
‘
‘ °
=
o
:..
D — '
? m
Qo
—
Q&
=3
pow
! &
; =2
J °-4
” o7
b
o
« [ 2 28
[ © N
‘ i ! _\ N
[} ] -
¢ o
! k]
+ [] . Lo RS T T T Lg T
' ! 000 005 010 015 020 025 0.30 035 040 0.45
i FREQUENCY
1)

Figure 516  Frequency Spectrum (1 sinusoid, M =20, SNR = 30dB).




W ol (T y € Yy,
50’ by o

o
’
N
o |
.|,'- v
.
o -
5_.5..
m! ’
Q ]
S O !
m .
aa i
2 !
Z © .
L \ j\j\M-/ |
- [ i
o A
© ] .
«
I
o d
0 :
? i 14 T :l
0.00 0.05 0.106 0.5 0.20 0.25 0.30 0.36 0.45 .
FREQUENCY «
t
Figure 5.17 Frequency Spectrum (1 sinusoid, M =20, SNR = 20dB). ‘
o1
©
e
| '
: 1
8 4
& 5
g, N
& 51 R
2 3
Z © <
ITE-H &
g o 4
o .
* :
o N
o ) '
T i i ¥ 1 1 !
0.00 0.05 0.0 0.5 0.20 0.26 0.30 0.35 040 045
FREQUENCY 3
0
Figure 5.18 Frequency Spectrum (1 sinusoid, M =20, SNR = 10dB). O
¢

PV e
J",,

1”‘-,“,! "..,
D) L] R

71

o .-, a‘..-,'. A i‘. »

R A

RULSERIT N

ool Y
~
A

ML CRENR 'N \' e

NN




. . . B . . . N . . *
] et e ke e g ettt At L A% L AT T e O O O O Ry
st PR » P « N 8

<
e
! A1
0
v
4
— |
m )
ae {
25 ’
2 \
T 9'1
< |
= ]
o
% .
o .
'_; L
‘l- Y ™ T™ "r T T T T —— A
0.00 0.05 0.0 0.5 0.20 025 030 035 040 045 ‘
FREQUENCY \
Figure 5.19 Frequency Spectrum (2 sinusoids, M =4, p=0.02). y
.
L]
o .
& Rt
° 4
o h
o~~~ ! '
Jas]
Eo
=R o ‘
Qo |
jon ] .
o
Z g A
Oa
<€ -
= x)
© .
o.- {
!.? ~ i J
o | ‘.
o i
[} T T T L 5 T oy T T T .-
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45 o
FREQUENCY ,

Figure 5.20 Frequency Spectrum (2 sinusoids, M =20, p=0.022). -8

[P

FalN 2 A AL P A W P L L e N L o o
AT 2h B L AR LR LW,

" R .;'_4, . ;_ Catete -“- '..-.'\ -. IR IR ..\-., -'._;...;"‘_. R _.\_. _.‘-_.‘ - ..
150. h“\.




-3.0
1

MAGNITUDE(DB)
-30.0 -21.0 -12.0

4
B T . >

~468.0 -39.0

i v Lf ¥ L T T Ll

0.00 0.06 0.0 0.5 020 025 0.30 035 040 0.5
FREQUENCY

- Figure 5.21 Frequency Spectrum (4 sinusoids, M =8, g =0.015). X

-1.0
L

-23.0 -12.0
1 -l
oo

~-34.0
L
S

MAGNITUDE(DB)

.1
.

L

L i f\ | 1‘,\ A }\ o \
MUJUJ/UUVUyqu\ :

0.00 0.05 0.0 015 0.20 0.25 0.30 0.35 040 045
FREQUENCY

-66.0 -450

Figure 5.22 Frequency Spectrum (4 sinusoids, M =30, p=0.014).
73 >

......
PI I I N R 2 SR I . | PR U U R S R Y T T AT AT ey «*

AR TR W Vst Sl A e e T T T R
u w X > " e . o

£,

NN TYRA

........

_,‘~_'- \ RS \ \ S S NGLR A

-~



8y ia g g g : Ah gt e ‘gl 0
X
E. SUMMARY, CONCLUSION AND SUGGESTED FUTURE WORK ’
The thesis investigates the application of lattice structures in Prony’s method of E
spectral line estimation. The complete soluiion to Prony’s method consists of three v,
steps: (i) representing a given process of M sinusoids in noise in terms of complex
exponentials, (i) finding roots of a svmmetric polynomial, and (iii) estimating the \
frequency, phase and amplitude information. In this thesis, however, we have s
emphasized only the frequency estimation problem. 3
The underlying theory of Prony’s method has been briefly reviewed in Chapter II.
By using a modified Prony’s approach, we observed that the frequency estimation (as ,.
part of Prony’s method) requires a polynomial with a linear phase property. The :
basics of the linear phase FIR filter and the lattice structure have been included in

Chapter III. Also we have shown that a linear phase FIR transfer function can be
realized from an FIR lattice using D number of additional unit delays and an adder,
where D is determined by the order of the linear phase polynomial.

The principles of adaptive filtering and the LMS algorithm have been briefly
studied in Chapter V. We have derived a2 new LMS algorithm for the FIR non-iineur ) .
phase ans linear phase transfer functions in Chapter V. The problem spectral

estimation using the new adaptive algorithm has been addressed, and the simulation .
results are included. H

R

The significant outcome of the work is the derivation of an LMS type algorithm
for a linear phase lattice structure and its application to spectral line estimation as part
of Prony’s method. As has been shown, the new algorithm. yielded faster convergence

rate compared to previously reported approximate algorithms. The application of this P
algorithm to spectral estimation produced high spectral resolution as illustrated by the N
simulation results. .

However, we have observed spurious spectral responses, when the model order is
higher that the required. Also we have observed that the SNR performance of the
algorithm needs to be improved. For input SNRs less than about 10 dB. the algorithm
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APPENDIX A

EXAMPLES OF OBTAINING A LATTICE STRUCTURE FOR THE FIR
TRANSFER FUNCTION

Y
Example A.l o\
Obtaining a lattice structure for the general FIR transfer function. The unit 4
sample response of a FIR transfer function is given by -
Hy(2) = 0.5 + 0.2527) + 0.1252°2 + 0.06252°> pS
Solution: Given unit sample response is ’
A
Hy(z) = 0.5 + 025271 + 0.1252°2 + 0.062523 (A.1) N
>
Y
Using Eq.(3.22), we have polynomial for 3 sections ..3
¥
= -1 -2 . -3 , ~3
H3(Z} = b3'0 + b3,lZ +b3'2Z + 03’32 \A~2) .:
}._:
Comparing Eqs.(A.1) and (A.2), we have Z:;
b3,0 = (.5
~
-~
(A.3) N
b3 o = 0.125 {4
o
i,
Starting with m=3 we have from Eq.(3.46) \
»
; i
K3 = 33'3 = .0625 Q:"
(A4) q
Sy = bin =05 :
3= b3 §
o]
Now, we need to generate the coefficients for H,(z) and from Eq.(3.46) "-
3
o
75 3




Om-1i = -

And for m=3 and i=0 we have
s3b39 - X3b

4
S -k3

3

[ (W

byo =

(0.5)(0.5) - (0.0625)(0.0625)

by = 1
20 0.5 . (0.0625)
Next, form = 3andi = 1 we get
by = 3031~ K3b39
2,1 s < k 2
3 3
0.5)0.25) - (0.0625)(0.125
2] = (©0.X 2)( }( ) = 0.47619
J (0.5)~ - (0.0625)
and finally
s7bax 5 - kqb
oy = 2237
’ $3° - kg
(0.5)0.125) - (0.0625)0.75)
= - = 0.19048
2,2 (0.5)% - (0.0625)%
from Eq.(3.46), we have
2= b0 =1
The new polynomial is
H2(Z) = b2’0 + b2 IZ-l + b2'22-2
76
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(A.6)

(A7)

(A.8)

(A.9)




Hy(z) = 1 + 0.47619z°] + 0.19048272 (A.10) '.:
g

':

for m=2 and i=0, we have t
by - kab :

by , = _2_.9__2.22..2_ -
Ll -k %
b '.

v

v

o.:5

1 -(0.19048)(0.19048) =

b = A.ll N
L1 I - (0.19048) (A1D >
-

P

and finally e
b= 021" K2 L
1,1 1 - k P X
2 -

iy

P

3

A

0.47619 - (0.19048)(0.47619) ) A

by = ~ = 0.40000 (A.12)

, I - (0.19048)~

2

From Eq.(3.46), we have :’
‘.

kl = bl,l = 0.40000 .:
(A.13) ,

sl = bl,O = 1 :\’
Therefore, reflection coefficients and s coefficients of the FIR lattice structure are E
kl = 0.40000 %
ky = 0.19048 2
ky = 0.0625
Sl = 1 .::
$a4 = ! :..;
- . u“-
53 = 0.5 Py
3

P

i

R

77 e

I

fl
]

r

,

NN SN LA 4NN AT L T N TN WY Y Y S e e s e - RESOI R ACIE MR AR IS R AT SR BT
:a.\‘i?‘....‘_ LR et R TIRD IR AL RS L 5P Sy e " N St f""."'«"""




Example A.2 (N= 4:even)

Obtaining a lattice structure for the linear phase FIR transfer function. A linear

phase FIR transfer function is

'y

Hs(z) = 0.154 + 0.4622°1 + 0.462z°2 + 0.1542°3 FALD '
¢ !

Solution: Eq.(A.14) can be written in the form of Eq.(3.35) N
2 1 N
= ) G - < .

H(2) ag + a2 +z (al + agz’’) (A.15) E

{
Comparing Eqs.(A.14) and (A.15), we get the following relationships. 2,
L
(A.16) ,';-
ay = 0.462
To determine the lattice reflection coefficients of the corresponding linear phase FIR 23
lattice structure and the number of unit delay, we use Eq.(3.29) which is A
>

HN.1@ = Fpy@ + 270 Gy2) (A.17)

From Eq.(A.14), we have N =4(even), the order of the polynomials FM(Z) and Gy(2),
M = (N/2)-1 = (4/2)-1 = 1, and the number of unit delays, D = N/2 = 2. Now,
from Eq.(3.37), we may have the forward prediction error transfer function as follows: X

Fl(Z) = aO + al Z-'l

(A.18)

S S LS
A -

= 0.154 + 0462 z!

for M= 1. Eq.(A.18) can be rewritten as

e SR AP

Fiz) = byg+ by, z! (A.19)

- -‘&{‘)' s

o
-

»
“
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" From Eqs.(A.18) and (A.19), we get the desired reflection coefficient and s coefficient
K of the linear phase FIR lattice structure as follows:

! kl = bl,l = (.462

;" Sl = bl,o = 0,154
o
K
" Example A.3 (N=5:0dd)
” Obtaining a lattice structure for the linear phase FIR transfer function. A linear
;' phase FIR transfer function is
¥
8
o = . -1 -2 -3 &4
- Hy(z) = 0.15-0.45z"" + 0.362°“ - 0.452°° + 0.152 (A.20)
N Solution: Eq.{A.20) can be written in the form of Eq.(3.30)
9
: -1 24,2 -1 2
¥ Hy(z) = ag + 227" + (1/2)ayz’" + 2 {(1/2)ay + ajz"" + apz™%} (A.21)
‘ Comparing Eqs.(A.20) and (A.21), we get the following relationships.
%
] ay = -0.45 (A.22)
) =
3.2 = (.36
i
W
;: To determine the lattice reflection coefficients of the corresponding linear phase FIR
. lattice structure and the number of unit delay, we use Eq.(3.29) which is
b
3 Hn (@) = Fpq(@) + 277 Gy(2) (A.23)

From Eq.(A.20), we have N= 5(odd), the order of the poiynomials Fap(z) and Gy(2),
> M = IN-1Y2 = (3-1)/2 = 2. and the number of unit delavs, D = (N-1Y2 = 2. Now,

) rom Ca.t3.32), ve mayv have the forward prediction 2rror cransicr funcuon as Joilews:

e Fylz) = ag + ag !+ (1/2) a9 22
K ’ (A24)
8 = 0.15 - 04521 + 0.18 2

for M =2, Eq.(A.24) can be rewritten as
79
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Fy(z) = b2,0 + b2,l zl+ b2’2 z

From Eqs.(A.24) and (A.25), we have

k2 = bz,z = 0.18
2% B = O3
Now, we need to generate the coefficients for F(z) and from Eq.(3.46)

_ (0.15)(0.15) - (0.18)(0.18) _ |
0.15% - 0.18¢

0.15)(-0.45) - (0.18)(-0.45
- )(7 ) (2 08) | 36364
0.15% - 0.18

by L = 2021 KB
b 27 - kg

From Eqs.(A.26) and (A.27), we have

b

5= b = 1
Therefore, reflection coefficients and s coefficients of the linear phase FIR lattice

structure are

= -1.36364
= 0.18
= 1

= 0.15
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APPENDIX B
COMPUTER PROGRAMS

* This program is designed for the system identification experiment *
* which is shown in Section (IV.D). The learning curves can be obtained*
* by plotting the error, E, versus the update iteration, k. *
s vk K v e e I sk ok & T vk ok Tk v sk vk ok s gk A ok vk ok sk 2 vk o ke e e ok e ok e e v gk vk e v Tk vk T v e vk e ke o o e oA e ke e s ok ok e o ok ok A ok o ok K e ok A
*

* Variable Definition

*

* ISEED : seed for the random number generation (white noise)

* AMU : adaptation constant

* k : time index

* M : order of the FIR transfer function or total number of

* lattice sections

* NB : number of iterations

* A(I) : cdefficients of the FIR transfer function

o B(I) : rellection coefficients of the lattice

* F(I) : forward prediction error

* G(I) : backward prediction error

* GD(I) : delayed backward prediction error

* SGL(I): estimations of power

* W(K) : input of both FIR and lattice

* YF(K) : output of the FIR filter

* YL{K) : output of the lattice filter

* ER(K) : squared error

*

* Variable Declaration

*

INTEGER ISEED,K,I,J,N,M,NB
REAL A(100),B(100),F(100),G(100),GD(100),¥YF(10000),YL(10000)
REAL X(100),SGL(100),ER(10000),W(10000),Y(10000),AMU,E

(1

5e= 33agtation Tanstant U and Number »f Iterations NB

1 FORMAT(5X, 'AMU' ,5X,'NB’)
READ(S,*) AMU,NB

* Initialization

DO 10 K=1,100
A(K)=C

81




. - ve tat Y2t tat ‘abaal. it ml ate’
o g yen be o TP T T W W W, " a°0 PR LT W L R TR L R RN AR RN TN Kadal Patias afadty

B(K)=0
: X(K)=0
: F(K)=0
! G(K)=0
GD(K)=0
SGL(k)=1.9
10 continue
DO 15 K=1,10000
YF(K)=0
YL(K)=0
ER(K)=0
W(K)=0
Y(k)=0
15 CONTINUE
E=0.
R=1
ISEED=343169
M=2
a(1)
A(2)
a(3)

1.0
-0.89
+0.25

Random Number Generation
(mean zero, unit variance, white sequence)

* * * %

DO 20 N=1,NB
CALL LNORM(ISEED,RN,1,1,0)
W(N) = RN
20 CONTINUE

*

FIR Fiiter Calculation

DO 30 K= 1,NB
X(1)=W(K)
YF(R)= A(1)*X(1)
DO 40 I=1,M
YF(R)=YF(K)+A(I+1)*X(I+1)
40 ZONTINUE
20 43 I=1,4
L(M+2-I)=K(11+1-1)
45 CONTINUE
30 CONTINUE

* Lattice Filter Calculation
*

DO 50 K =1,NB
F(1)=W(K)

82

Y
~
b
N
o
:




P O U S ST P POV w————
!

G(l)=sW(K)
DO 60 I = | M
F(I+1l)sP(I)+B(1)*GD(1}
G(I+1,;®GD(I ;+B(I,*F()
80 CONTINUX

L/ =FIMe .
* Calculating the Error

E = YF(K) - YL(K)

Updating the Reflection Coefficients

CALL LMS (B,GD E, AMU, SGL M)

ER(K)=E**2

DO 70 J=1 M

GD(J)=G(J)

70 CONTINUE

IF (K.EQ.R) THEN
WRITE(5,320 X, 3B(1) 3’2 ER'K,

R=R+50 :
END IF :
Y(k)=E “
50 CONTINUE
300 FORMAT(3X,16,5X,3(F10.7,4X)) .
N .
* Plotting the Learning Curve .
* »
CALL PLOT(Y,N) ’
STOP !
END :
* .
N X
* .
SUBROUTINE LMS(B,GD,E,AMU,SGL M)
REAL B(100),GD(100),SGL(100),E,AMU
INTEGER M
20 236 I=i,
SGL{Z)=0.3"3GL 2, ~C.." 3Dl "D .1, ,
200 CONTINUE
DO 210 I=1.M
B(I)=B(I)+(AMU/SGL(I))*E*GD(I)
210 CONTINUE :
RETURN 2
END
* -
83
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SUBROUTINE PLOT(Y.N)
DIMENSION Y(N} . X(10000)
ISTP=N/10
IR .
6 K= :ﬁ
¢ CALL TEK618 v
¢ CALL PRTPLT(72.6) N
CALL SHERPA( PARKPARK' . 'A',3) A
CALL PUYSCRIL. L s
CALL RESET( ALL') >
CALL PAGE ' 8.5,.1.0] ;g,
CALL HWROT! AUTO') :
ZALL XINTAX ,
TALL AREA2D(5.2.2.8) ‘&
TALL HEIGHT/C.12° 3
TALL COMPLX R,
CALL SHDCHR(90.0,1,0.002,1) i
CALL HEADIN( LEARNING CURVES' ,100,2.0.1) :
TALL TIAME  ITEPATIONSS 133 N
CALL YNAME( ERRGRS ,100Q) 7
CALL MESSAG’ ADAPTIVE LATTICE/AMUx.5 F1G4.8)$',6100,3.0,-0.8) N
CALL FRAME -
CALL GRAF(O,ISTP,N,-3.0,1.5,3.0) s
¢ CALL THKCRV(0.02) -
CALL CURVE(X,Y,N,0) o~
CALL ENDPL(O) &
CALL DONEPL N
RETURN e
END -3
I-
’
.)
K
x
_"
N
2
)
e
'J'
) I
34 o,
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* This program is designed for the system identification experiment *

* using the LMS algorithm which was derived in Section (V.B). *
Je e e e v 7k v I e e v s sk 7k e e ke e vk ok gk ok e Fe e ke ok e ke 3k e e e e ke e T 3k e e e e e ke vk gk ok e e ke e ok ok 2k ok ke Ao e e ok oK ok ok ok ok ke ok ok

%
%*
%

*

" . . -~ ” . LA VLY ;. UG S o \ 3 O 1 ‘
MU OO O U O OO L O 0 X LOLEGM N NN T Un) ln ' » 1) RN
; LS, piK ) W,

15

INTEGER ISEED,K,I,J,N,M,NB

REAL A(100),B(100),F(100),G(100),GD(100),x(100),YF(5000),YL(5000)
REAL ER(5000),W(5000),SGL(10G),PH(100,100),PS(100,100)

REAL PSD(100,100),GR(100),Y(5000) ,AMU,E

Set Adaptation Constant B and Number of Iterations NB

WRITE(S,1)
FORMAT(SX, 'AMU' ,5X, 'NB')
READ(S,*) AaMU,NB

Initialization

E=0.
R=1
DO S5 K= 1,5000
W(K)=0
YF(K)=0
YL(K)=0
ER(K)=0
Y(K)=0
CONTINUE
DO 10 K=1,10Q0
a(K)=0
B(K)=0
X(K)=0
F(K)=0
G(K)=0
GD(K)=0
SGL(K)=1.0
GR(R)=0
CONTINUE
DO 15 K=1,1i00
DO 15 L=1,100
PH(K,L)=0
PS(K,L)=0
PSD(K,L)=0
CONTINUE
ISEED=343169
M=2
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s _K

i
¢,
a(l) = 1.0 >
A(2) = -0.89 R
A(3) = +0.25
%*
* Random Number Generation X
* (mean zero, unit variance, white sequence) N,
%* ]
1 °at.
DO 20 N=1,NB "
CALL LNORM(ISEED,RN,1,1,0) o
W(N) = RN P
20 CONTINUE .
* :.-
o
* FIR Filter Z
*
DO 30 K = 1,NB 2
X(1)=W(K) .'."
YF(R)= A(1)*X(1) 0
DO 40 I=1,M v
YF(K)=YF(K)+A(I+1)*X(I+1) b
40 CONTINUE K¢
DO 45 I=1,M a
X(M+2-I)=Z(M+1-1) )
4s CONTINUE <
30 CONTINUE NS
b :-‘
* Lattice Filter -
* NS
DO 50 K =1,NB
F(1)=W(K) ‘3
G(1)=H(K) 3
DO 60 I = 1,M o
F(I+1)=F(I)+B(I)*GD(I) gt
G(I+1)=GD(I)+B(I)*F(1) o’
60 CONTINUE o
YL(K)=F(M+1) o
E = YF(K) - YL(K) N
* \:
% Updating the Reflection Coefficients \f;
CALL MLMS (PH,PS,PSD,GR,7,G,GD,3,SGL,E,AMU,M) 1:“
ER(K)=E**2 7}
DO 70 J=1,M SN
GD(J)=G(J) 3
70 CONTINUE <
IF (K.EQ.R) THEN SN
WRITE(6,300) K, B(1),B(2),B(3),B(4),B(5),B(6),B(7),B(8).E 73
R=R+30 \:n*
a3
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END IF

Y(K)=E
c WRITE(6,100) K,W(X),YF(K),YL(K),E, ER(K)
50 CONTINUE

300 FORMAT(1X,I16,2X,9(F10.7,2X))
100 FORMAT(3X I3.2X.5(F10.7,2X))

*
* Plotting the Learning Curve
*®
CALL PLOT(Y,N)
STOP
END
*
*
*

SUBROUTINE MLMS(PH,PS,PSD,GR,F,B.BD,R,SGL, EK,AMU,N)
DIMENSION PH(100,100),PS(100,100),PSD(100,100),F(100),B(100)
1,BD(100),R{100),GR(100),SGL(101)
GR(N)=BD(N)
DO 200 I=2,N
PH{I, 1)=BD(N+1-1)
PS(I,1)=F(N+1-I)
IT=1-1
DO 10 K=1,IT
PH(I,K+1)=PH(I,K)+R(N+1-I+K)*PSD(I,K)

10  PS(I,K+1)=PSD(I,K)+R(N+1-I+K)*PH(I,K)
DO 20 K=1,IT

20  PSD(I,K)=PS(I,K)

200 CONTINUE
DO 210 K=2,N

210 GR(N+1-K)=PH(K,K)
DO 211 K=1,N

211 SGL(K)=.90*SGL(K)+.10*GR(K)*GR(K)+1.0
DO 220 I=1,N
R(1)=R(I)+(AMU/SGL(I))*EK*GR(1I)
IF(R(I).GE.1.0) R(I)=0.
IF(R(1).LE.-1.0) R(I)=0.

220 CONTINUE

RETURN
END

*

*

*

SUBROUTINE PLOT(Y,N)
DIMENSION Y(N),X(5000)
ISTP=N/10

DO 10 J=1,N
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10 X(J)=J
¢ CALL TEKX618
c CALL PRTPLT(72,6)
CALL SHERPA( PARKPARK', 'A'.3)
CALL PHYSOR(1.,1.)
CALL RESET('ALL')
CALL PAGE 3.53,1ii.0) ‘
CALL HWROT('AUTO') '
CALL XINTAX !
CALL AREA2D(S5.0.2.8)
CALL HEIGHT(C.10}
CALL COMPLX
CALL SHDCHR(90.7.1,0.002,1)
CALL HEADIN( 'LEARNING CURVES' 100,2.0,1)
CALL XNAME('ITERATIONSS ', 100)
CALL YNAME( ERRORS' .10C)
CALL MESSAG( 'ADAPTIVE LATTICE(AMU=.S5 FIGS.5)$',100.3.0 -0.8)

e YN s 0 g

ZALL FRAME
CALL GRAF(0,ISTP,N,-2.5,1.25.2.5) -
¢ CALL THKCRV(0.02"
’ FALL TURVE X Y N )

CALL ENDPL0/ .

CALL DONEPL A
RETURN :

END :

:
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*ﬁ**tﬁproqr.m 3****i*****************************************************

- & W

* This program is designed for the system identification experiment. *

* The LMS algorithm shown in Section (V.C) was extended to the linear *

* phase FIR lattice filter. *

e A g o s g s e o e e v o ot e sl gie sk s ok e Tt T e ol e o v e ok e ok vie sk s v ok e iy sk e v Jh ok sk sl e o v 7k T 3k Y e e sk i sk ok e A e e Tk v sk 3k g ok ok ke e ok

w

~ t

* 4

INTEGER ISEED,K,I,J,N,M,NB,R,MA ML . '
REAL A(100),B(100),F(100),G(100),GD(100),YF(3000),YL(3000)

REAL X(100Y H(100).YD(3000),ER(3000),W(3000),YFF(3000) YLL(3000) s,
REAL SGL(100),PH(100,100),PS(100,100),PSD(100,100)
REAL GR(100),GRD(100,100),GRB(100),Y(3000),AMU.E,C

Set Adaptation Constant M and Number of Iterations NB

WRITE(S,1) p
1 FORMAT (53X, 'AMU’ ,5X, 'NB')
READ(5,*) AMU,NB

Tnit:alization ¥

E=0. _
R=} N
M=4 -
ISEED=343169
DO 10 K=1,100
A(K)=0
B(K)=0
X(K)=0 )
F(K)=0
G(K)=0
GD(K)=0
H(K)=0
SGL(K)=1.0
GR(K)=0
GRB(K)=0
9 CONTZNUE
2C L1 %=1,3000
WX =0
YF(K)=0
YL(K)=0
YFF(K)=0
YLL(K)=0 t
¥D(K)=0
ER(K)=0
Y(K)=0
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11 CONTINUE
DO 15 K=1,100
DO 15 L=1,100

PH(K,L)=0
PS(K,L)=0 .
PSD(K,L)=0 Y,
GRD(K,L)=0 n
15 CONTINUE "
c  C=.154 . s
c A(1)=.154/C !
c  A(2)=.462/C N
C=,15 :‘
a(1)=.15/C 4
A(2)=-.45/C ¥
A(3)=.36/C p
*
* Random Number Generation k
* (mean zero, unit variance, white sequence) %
« .
DO 20 N=1,NB .
CALL LNORM(ISEED,RN,1,1,9) 2
W(N) = RN 2
20  CONTINUE {
IF (MOD(M,2).EQ.0) MA=M/2 .,
IF (MOD(M,2).NE.0) MA=(M+1)/2 R
IF (MOD(M,2).EQ.0) ML=MA |
IF (MOD(M,2).NE.O) ML=MA-1 -
* "
<.
* Separation of Coefficients Z
* )
IF (MOD(M,2).EQ.0) THEN _
DO 21 I=1,MA ¢
H(I)=a(I) :.
H(MA+2+1)=A(MA+1-1I) ”
21 CONTINUE b,
H(MA+1)=A(MA+1)/2 g
H(MA+2)=A(MA+1)/2 i
IND 17 -
IF (MOD(M,Z).NE.J) THEN g
20 22 I=i,v1A ;
H(I)=A(I) ;
H(MA+I)=A(MA+1-I) >
22 CONTINUE =
END IF "
*
* LINEAR PHASE FIR FILTER £y
*
»
90 fﬁ
Wy
by \]
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DO

30 K= 1,NB
X(1)=W(K)
YF(K)=H(1)*X(1)
IF (MOD(M,2).EQ.0) THEN
DO 40 I=1,MA
YF(KY=YF(R)+H(I+1)AX(I+1)
CONTINUE
YFF(K)=YF(K)
DO 41 I=1,Ma+l
YFF(K)=YFF (K)+F (MA+1+1)*X(MA+I)
CONTINUE
END IF
IF (MOD(M,2).NE.O) THEN
DO 42 I=1,MA-1
YF(K)=YF(R)+H(I+1)*X(I+1)
CONTINUE
YFF(K)=YF(K)
DO 43 I=1,MA
YFF(K)=YFF(K)+H{MA+I)*X(MA+I)
CONTINUE
IND IF
DO 45 I=1 M
X(M+2-1)=X(M+1-1)
CONTINUE

CONTINUE

LATTICE FILTER

DO 50 K =1,NB

ER(K)=E**2
DO 70 J=1,ML
GD(J)=G(J)
CONTINUE
91
R R N -,;,;,{,{a;ggg- s s

F(1)=W(K)
G(1)=W(K)

DO 60 I = 1,ML
F(I+1)=F(I)+B(I)*GD(I)
G(I+1)=GD(I)+B(I)*F(I)

CONTINUE

YL{K)=F(ML+1)

YD(K)=G(ML+1)

YLLK =YL{X)+7D(K-MA)

T = IFR(EY - TLLLK

-t \

Updating the Reflection Coefficients

caLL muMs (P,Q,QD,GRB,GRD,F,G,GD,B,SGL,E,AMU, ML, MA)

-------
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Y(K)=E y
WRITE(6,300) K,Y(K) -

50 CONTINUE 4
*

* Plotting the Learning Curve Q
* »

CALL PLOT(Y,N)
300 FORMAT(3X,I6,3X,F10.5) N

STOP © )

END
* 8
1Y
%* \
* N
\

SUBROUTINE MLMS(PH,PS,PSD,GRB,GRD,F,B,BD,R,SGL,EK,AMU N, MA)
DIMENSION PH(100,100),PS(100,100),PSD(100,200),GRD(100,100)

1,GRB(100),F(100),B(100),BD(100),R(100),GR(100),SGL(101) 3
GR(N)=BD(N) -
GRB(N)=F(N) :
DO 200 I=2,N N
PH(I,1)=BD(N+1-I)

PS(T,1)=F(N+1-1) S
IT=I-1 .

DO 110 K=1,IT )
PH(I,K+1)=PH(I, K)+R(N+1-I+K)*PSD(I,K) y

110  PS(I,K+1)=PSD(I,K)+R(N+1-I+K)*PH(I,K)

DO 120 K=1,IT )

120  PSD(I,K)=PS(I,K) -
200 CONTINUE <
DO 210 K=2,N o
GR(N+1-K)=PH(K,K) ¥

210 GRB(N+1-K)=PS(K,K) b,
DO 220 K=1,N N

DO 220 L=1,MA >

220 GRD(K,MA+2-L)=GRD(K,MA+1-L) >
DO 230 K=1,N <

230 GRD(K,1)=GRB(K) S
DO 240 K=1,N '

240 GRB(K)=GRD(X,MA+1) Ny
3¢ 250 ®=l,N o

25C  GR(K)=GR(X)+GRB{X) B!
DO 260 K=1,N ]
260 SGL(K)=.90*SGL(K)+.10*GR(K)*GR(K)+1.0 o
DO 270 I=1,N N
R(I)=R(I)+(AMU/SGL(I))*EK*GR(I) N,
c IF(R(I).GE.1.0) R(I)=0. !
c IF(R(I).LE.~1.0) R(I)=0. [
270 CONTINUE x
»
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. SUBROUTINE PLOT(Y.N)

\ DIMENSION Y(N),bX(3000)
! ISTP=N/10
‘ DO 10 J=1,N
10 X(J3)=J
c CALL TEKe18
' < CALL PRTPLT(72.6)
. CALL SHERPA('PARKPARK', 'A',3)
CALL PHYSOR(1l.,1.)
CALL RESET('ALL')
CALL PAGE(8.5,11.)
CALL HWROT('AUTO')
Call XINTAX
CALL AREA2D(S5.0,2.8)
CALL HEIGHT(0.10)
CALL COMPLX
CALL SHDCHR(90.0,1,0.002,1)
CALL HEADIN('LEARNING CURVES',100,2.0,1)
CALL XNAME('ITERATIONSS',100)
CALL YNAME('ERRORS',100)
CALL MESSAG('ADAPTIVE G-M LATTICE(FS.10,AMU=0.1)$',100,3.0,-0.8)
3 CALL FRAME
K CALL GRAF(O,ISTP,N,-8.0,4.0,8.0)
! c CALL THKCRV(0.02)

CALL CURVE(X,Y,N,0)

CALL ENDPL(O)

v C3LL DONEPL
) RETURN
Y END
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******Proqrcm GERARAAR AR AR R AR R AR RRN AR RAAR AR AR AR RR AR AT e a T wwnw \
* This program is designed for the estimation of spectra. lines in - .
* white noise. The input process x( k) consists of a signal 1in ncise. * 4
* and a signal may be a single. or mul-ip.e sinuso:ds. The alzcr.tom -
* was derived in Section (V.D). *
RAAAKRARRRRARRRARA A AR RAR AR RARRA RS AR AR R AR AR AR RN AR RN RN AR PR AN AN T ARG s AR e .
« X
Y
* \
»*
INTEGER ISEED.K.I J.N M. NB.R.MA ML D
REAL A(100),B{100) . F/.00) .G 102} GD«120" YL: 5002
REAL Y(100),YD(500Q0) W{SO0Q. ¥YLLi530C: YD(5202 INFP.520:
REAL SGL(1QO1),PH{12C 120, PS 122, 127 psz. .32 1l
REAL GRD(.00.10C) 3RB(i00) GR.132) R
REAL RE(10Q) IM. 100} AJ(100) SD.SNR . AVG AMP AMU E
Set Adaptation Constant M and Number of Iteraticns NB N
WRITE(S.1) 3
FORMAT (5X, 'AMU' ,5X. 'NB ) 3
REAZ!{S *) AMU NE -
" P
* Initialization '
¢ ISPEC=1000 -
SNR=30. .
SD=10** (- (SNR/20)) -]
AMP=SQRT(2.) ..
AVG=0. .
E=0. A
c R=1 by
PI=3.141592654 >
M=38 4
MP1=M+1 ~
ISEED=343169 i~
IF (MOD(M,2).EQ.0) THEN ‘s
=M/2 o
ML=MA :
ZLSE .
MAEIEL) /2 -
ML=MaA-1 :.
END IF -
DO 10 K=1,100 o
A(K)=0 -
B(K)=0 :
F(K)=0 Py
G(K)=0 ~
94 5'
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10

11

15

* * * *

20

*

a0

60

DO

GD(K)=0
SGL(K)=1.0
GR(K)=0
GRB(K)=0
RE(K)=0
IM(R)=0
AJ(R)=0
Y(K)=0

CONTINUE

DO 11 K=1,5000
W(K)=0
YL(K)=0
YLL(K)=0
YD(R)=0
ER(K)=0
INP(K)=0

CONTINUE

DO 15 X=1,100

DO 15 L=1,100
PH(K,L)=0
PS(K,L)=0
PSD(K,L)=0
GRD(K,L)=0

CONTINUE

Random Number Generation

(mean zero, unit variance, white sequence)

20 N=1,NB
CALL LNORM(ISEED,RN,1,1,0)
W(N) = SD*RN+AVG

CONTINUE

jale]

LATTICE FILTIER

50 K =1,NB
AR=X-1

* J \ AR *

INP (K)=AMP*COS (2*PI* . 15*AK)+W(K)
INP(R)=AMP™!( 20S(2=PT=™. [3=aK +COS(27PI~. . 2C07al v 7

INP /(X =AMP*/ COS(27PI* I57FAK +IC3. IVPIT.LIITAT -

*)+COS (2%PI*,35%AK) ) +W(K)

F(1)=INP(K)
G(1)=INP(K)
po 60 I =1,ML

F(I+1)=F(I)+B(I)*GD(I)
G(I+1)=GD(I)+B(I)*F(I)

CONTINUE
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70

0

* * ¥ X

80

81

*

50

300
301

< et IR AR IRT R # 9 6 4 < 0 d L st 37 g N OV LW St 23 g)

YL(K)=F (ML+1)

YD(K)=G(ML+1)

YLL(K)=YL(K)+YD(K-MA)
E = YLL(K)

Updating the Reflection Coefficients

CALL MLMS (PH,PS,PSD,GR,GRB,GRD,F,G,GD,B,SGL,E,AMU, ML ,MA)
ER(K)=E**2
DO 70 J=1,ML
GD(J)=G(J)
CONTINUE
IF (K.NE.ISPEC) GO TO 50
IF (K.EQ.NB) THEN
WRITE(6,300) K,INP(K),E
WRITE(6,301) K,B(1),B(2),B(3),B(4).B(5),B(6),B(7).B(8),B(9)
R=R+100

Determine the FIR Coefficients from the Lattice Reflection
Coefficients

CALL STEPUP (A,B,ML)
IF (MOD(M,2).EQ.0) THEN
DO 80 I=1,M/2
A(M+2-1)=A(I)
A(M/2+1)=2*%A(M/2+1)
ELSE
DO 81 I=1,(M+1)/2
A(M+2-I)=A(I)
END IF
WRITE (6,600) (I,A(I), I=1,MP1)

Calculate the Power Spectrum

CALL SPEC (RE,IM,A,AJ,M,PI)
D=100
WRITE (6,601) (.005*Z,AJ(2),2=1,D)

Plotting the Spectrum

CALL PLOT(AJ,D)
ISPEC=ISPEC+1000
END IF

CONTINUE

WRITE (6,300) (YLL(X),K=1,6NB)
FORMAT(10(F10.7,1X))
FORMAT(1X,I15,1X,10(F10.7,1X))
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600 FORMAT (1X,I5,5X,F15.7)
601  FORMAT (1X,F5.3,5X,F15.7)

STOP

END

*
N *
i - *
; SUBROUTINE MLMS(PH,PS,PSD,GR,GRB,GRD,F,B,BD,R,SGL,EK,AMU,N,MA) .
K DIMENSION PH(100,100),PS(100,100),PSD(100,100),GR(100),GRB(100)
' 1,GRD(100,100),F(100),B(100),BD(100),R(100),SGL(101)

% GR(N)=BD(N)
X GRB(N)=F(N)
L DO 200 I=2,N
3 PH(I,1)=BD(N+1-I)

PS(I,1)=F(N+1-I)
n IT=I-1
i DO 110 K=1,IT
; PH(I,K+1)=PH(I,K)+R(N+1-I+K)*PSD(I, K)
e PS(I,K+1)=PSD(I,K)+R(N+1-I+K)*PH(I,K)
® 110  CONTINUE
e DO 120 K=1,IT
{ 120  PSD(I,K)=PS(I,K)
% 200 CONTINUE
g DO 210 K=2,N
o GR(N+1-K)=PH(K,K)

GRB(N+1-K)=PS(K,K)
! 210 CONTINUE
N DO 220 K=1,N
b DO 220 L=1,MA
) 220 GRD(K,MA+2-L)=GRD(K,MA+1-L)

DO 230 K=1,N

230 GRD(K,1)=GRB(K)

' DO 240 K=1,N
2 240 GRB(K)=GRD(K,MA+1)
§ DO 250 K=1,N
) 250 GR(K)=GR(K)+GRB(K)
y DO 260 K=1,N
v 260 SGL{X)=.90*SGL(K)+.10*GR(K)*GR(X)+1.0

20 270 I=L.N
b R(I)=R(I;=(AMU/SGL(I))*SK*GR(I
' IF(R(I).GE.1.0) R(I)=0.
R IF(R(I).LE.-1.0) R(I)=0.

: 270 CONTINUE
’ RETURN
\ END
N *
*
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SUBROUTINE STEPUP (A,B,ML)
DIMENSION A(100),C(100),B(100)

A(1)=1. ,
A(2)=B(1) t
DO 30 MINC=2,ML o
DO 10 J=1,MINC "
JB=MINC-J+1 : )
10 C(J)=A(JB) ' '

DO 20 IP=2,MINC
20 A(IP)=A(IP)+B(MINC)*C(IP-1)

A(MINC+1)=B(MINC) fﬂ
30  CONTINUE
RETURN e
END ,
* .f
* i)
* ;,
SUBROUTINE SPEC(RE,IM,A,AJ,M,PI)
REAL RE(100),IM(100),A(100),AJ(100),Y(100) %
RE(1)=a(1) .
IM(1)=0. :
DO 91 J=1,100
DO 92 I=1,M \
RE(I+1)=RE(I)+A(I+1)*COS(2*I*PT*.5%J/100) )
IM(I+1)=IM(I)+A(I+1)*SIN(2*I*PI*,5*J/100) <
92  CONTINUE ply
AJ(J)=-10.*ALOG1O0(RE(M+1)*RE(M+1)+IM(M+1)*IM(M+1)) 4
91  CONTINUE ﬁ;
TEMP=AJ (1) o
DO 93 L=2,100 b
IF (AJ(L).GT.TEMP) TEMP=AJ(L) Y
93  CONTINUE 4
DO 94 L=1,100 o
AJ(L)=AJ(L)-TEMP o
94 CONTINUE 4
RETURN &
ZND |'
* :
« Bolt,
* 9
SUBROUTINE PLOT(Y,N) D
DIMENSION Y(N),X(100) o
c ISTP=N/10 Q;x
c DO 10 J=1,N f
cl0 X(J)=J H
DF=.5/N -j
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X(1)=0
DO 10 K=2,N
10 X(K)=X(K-1)+DF
XMIN=X(1)
XMAX=X(N)
XSTP=10*DF
IYMIN=Y(1)
IYMAX=Y(1)
DO 20 K=2,N :
IF(Y(K).GT.IYMAX) IYMAX=Y(K)
IF(Y(K).LT.IYMIN) IYMIN=Y(K)
20  CONTINUE
IYSTP=(IYMAX-IYMIN)/5

c CALL
c CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CaLL
CaLL
c CALL
CALL
CALL
CALL
c CALL
CALL
CaLL
CALL

TEK618

PRTPLT(72,6)

SHERPA ( 'PARKPARK','A',3)
RESET('ALL')
PAGE(8.5,11.0)
HWROT('AUTO')

XINTAX

AREA2D(5.0,2.8)
HEIGHT(0.10)

COMPLX
SHDCHR(90.0,1,0.002,1)

HEADIN('FREQUENCY SPECTRUMS',100,2.0,1)

XNAME (' FREQUENCY$',100)

YNAME ( 'MAGNITUDE(DB)$',100)

MESSAG('FIGURE 5.21 (M=8 ,SNR=30DB)$',100,3.0,-0.8)

MESSAG('MODEL ORDER SELECTION(4 SINUSOIDS)S$',100,3.0,-0.8)

THKFRM(0.03)
FRAME

GRAF (XMIN,XSTP,XMAX, IYMIN, IYSTP, IYMAX)

THKCRV(0.02)
CURVE(X,¥Y,N,0)
ENDPL(0)
DONEPL

RETURN

ZND

ALY L -
£ A O O L Lt ‘t! O
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